$$\begin{array}{rlll} sin(x)&=&cos(2x)\\ sin(x)&=&cos^2(x)-sin^2(x)\\ sin(x)&=&1-sin^2(x)-sin^2(x)\\ sin(x)&=&1-2sin^2(x)\\ 2sin^2(x)+sin(x)-1&=&0\qquad &\mbox{let y=sin(x)}\\ 2y^2\:\:+y\:\:-1&=&0\\ 2y^2\:\:+2y-1y\:\:-1&=&0\\ 2y(y+1)-1(y+1)&=&0\\ (2y-1)(y+1)&=&0\\ \end{array}$$
$$\begin{array}{rllrl}
2y-1&=&0\qquad y+1&=&0\\ y&=&\frac{1}{2}\qquad y&=&-1\\ sin(x)&=&\frac{1}{2}\qquad sin(x)&=&-1 \end{array}$$
$$x=\frac{\pi}{6},\:\frac{5\pi}{6},\:\frac{3\pi}{2}\qquad \mbox{for}\:\: 0\le x\le 2\pi}}$$
.
sin(x)=cos(2x)
sin(x)-cos(2x)=0 | Move x to one side of equation
sin(x)-(1-sin2(x))=0 | Double angle identity
sin2(x)+sin(x)-1=0 | simplify terms
(2sin(x)-1)(sin(x)+1)=0 |
x=π/6 , 3π/2 | if you need degrees, x=30º ,270º
Anonymous left a 2 out of the third and fourth lines above. Should be
sin(x)-(1-2sin2(x))=0 | Double angle identity
2sin2(x)+sin(x)-1=0 | simplify terms
The 2 is there correctly in the fifth line though!
Could also have x=5π/6 (150°) as a second quadrant solution.
$$\begin{array}{rlll} sin(x)&=&cos(2x)\\ sin(x)&=&cos^2(x)-sin^2(x)\\ sin(x)&=&1-sin^2(x)-sin^2(x)\\ sin(x)&=&1-2sin^2(x)\\ 2sin^2(x)+sin(x)-1&=&0\qquad &\mbox{let y=sin(x)}\\ 2y^2\:\:+y\:\:-1&=&0\\ 2y^2\:\:+2y-1y\:\:-1&=&0\\ 2y(y+1)-1(y+1)&=&0\\ (2y-1)(y+1)&=&0\\ \end{array}$$
$$\begin{array}{rllrl}
2y-1&=&0\qquad y+1&=&0\\ y&=&\frac{1}{2}\qquad y&=&-1\\ sin(x)&=&\frac{1}{2}\qquad sin(x)&=&-1 \end{array}$$
$$x=\frac{\pi}{6},\:\frac{5\pi}{6},\:\frac{3\pi}{2}\qquad \mbox{for}\:\: 0\le x\le 2\pi}}$$