+0  
 
0
320
1
avatar

Sin(x)/Cos(x) + Cos(x)/1 + Sin(x) 

Guest Jun 12, 2015

Best Answer 

 #1
avatar+90970 
+10

I assume that you really mean this     

Sin(x)/Cos(x) + Cos(x)/(1 + Sin(x) )

 

$$\\\frac{Sin(x)}{Cos(x)} + \frac{Cos(x)}{1 + Sin(x) }\\\\
=\frac{Sin(x)}{Cos(x)} + \frac{Cos(x)(1-sin(x)) }{(1 + Sin(x))(1-sin(x)) }\\\\
=\frac{Sin(x)}{Cos(x)} + \frac{Cos(x)(1-sin(x)) }{(1-sin^2(x)) }\\\\
=\frac{Sin(x)}{Cos(x)} + \frac{Cos(x)(1-sin(x)) }{cos^2(x) }\\\\
=\frac{1}{Cos(x)}\\\\
=sec(x)$$

Melody  Jun 12, 2015
Sort: 

1+0 Answers

 #1
avatar+90970 
+10
Best Answer

I assume that you really mean this     

Sin(x)/Cos(x) + Cos(x)/(1 + Sin(x) )

 

$$\\\frac{Sin(x)}{Cos(x)} + \frac{Cos(x)}{1 + Sin(x) }\\\\
=\frac{Sin(x)}{Cos(x)} + \frac{Cos(x)(1-sin(x)) }{(1 + Sin(x))(1-sin(x)) }\\\\
=\frac{Sin(x)}{Cos(x)} + \frac{Cos(x)(1-sin(x)) }{(1-sin^2(x)) }\\\\
=\frac{Sin(x)}{Cos(x)} + \frac{Cos(x)(1-sin(x)) }{cos^2(x) }\\\\
=\frac{1}{Cos(x)}\\\\
=sec(x)$$

Melody  Jun 12, 2015

10 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details