+0  
 
0
434
1
avatar

sinC/20 = sin65/19, how it gets to C=arcsin(20sin65/19)=73

off-topic
 May 30, 2017

Best Answer 

 #1
avatar+7352 
+2

\(\frac{\sin C}{20}=\frac{\sin 65^{\circ}}{19}\)

 

Multiply both sides of the equation by 20.

\(\sin C=20\,*\,\frac{\sin 65^{\circ}}{19} \\~\\ \sin C = \frac{20\sin 65^{\circ}}{19}\)

 

Take the arcsin of both sides of the equation.

\( C = \arcsin(\frac{20\sin 65^{\circ}}{19})\)

 

So...putting this into a calculator gives us

\(C\approx72.556^{\circ}\)

.
 May 30, 2017
 #1
avatar+7352 
+2
Best Answer

\(\frac{\sin C}{20}=\frac{\sin 65^{\circ}}{19}\)

 

Multiply both sides of the equation by 20.

\(\sin C=20\,*\,\frac{\sin 65^{\circ}}{19} \\~\\ \sin C = \frac{20\sin 65^{\circ}}{19}\)

 

Take the arcsin of both sides of the equation.

\( C = \arcsin(\frac{20\sin 65^{\circ}}{19})\)

 

So...putting this into a calculator gives us

\(C\approx72.556^{\circ}\)

hectictar May 30, 2017

33 Online Users

avatar
avatar
avatar
avatar
avatar
avatar