+0  
 
+1
174
1
avatar+5 

Find the slope tangent line to the curve of  \(f(x) =( \sqrt{}x+2) -1\) at X=2.  Find the equation of tangent line to the function f at x=2 and graph both the function and the tangent line.  

 

\(m= lim_{x\rightarrow 2} = f(x)-f(2) / x-2 \)

 

\(\sqrt{}x+2 -1 - (\sqrt{}x+2 -1) / x-2\)

 

I believe that the slope will be 1/4 however I'm not sure exactly how to get the answer.   

 Feb 11, 2019
 #1
avatar+19963 
0

f(x) = sqrt(x+2) -1

f'    = 1/ (2(sqrtx+2))      at x = 2   this will give you the slope AT x=2    1 /(2(sqrt2+2)) = 1/4

 Feb 11, 2019

17 Online Users

avatar
avatar