+0  
 
0
716
1
avatar

a=sqrt(3)+1, b=sqrt(3)-1, ((a+bi)/(a-bi)+(b+ai)/(b-ai))^10

 Aug 8, 2015

Best Answer 

 #1
avatar+97561 
+13

a=sqrt(3)+1, b=sqrt(3)-1, ((a+bi)/(a-bi)+(b+ai)/(b-ai))^10

 

$$\\\left(\frac{(a+bi)}{(a-bi)}+\frac{(b+ai)}{(b-ai)}\right)^{10} \\\\
=\left(\frac{(a+bi)(a+bi)}{(a-bi)(a+bi)}+\frac{(b+ai)(b+ai)}{(b-ai)(b+ai)}\right)^{10} \\\\
=\left(\frac{a^2-b^2+2abi}{a^2+b^2}+\frac{b^2-a^2+2abi}{b^2+a^2}\right)^{10} \\\\
=\left(\frac{a^2-b^2+2abi+b^2-a^2+2abi}{a^2+b^2}\right)^{10} \\\\
=\left(\frac{4abi}{a^2+b^2}\right)^{10} \\\\
$We are given that $\;\;\;\ a=(\sqrt3+1)\qquadand\qquad b=(\sqrt3-1)\\\\
=\left(\frac{4(\sqrt3+1)(\sqrt3-1)i}{(\sqrt3+1)^2+(\sqrt3-1)^2}\right)^{10} \\\\$$

$$\\=\left(\frac{4(3-1)i}{(3+1+2\sqrt3)+(3+1-2\sqrt3)}\right)^{10} \\\\
=\left(\frac{4(2)i}{8}\right)^{10} \\\\
=i^{10} \\\\
=(i^2)^5 \\\\
=(-1)^5 \\\\
=-1$$

.
 Aug 8, 2015
 #1
avatar+97561 
+13
Best Answer

a=sqrt(3)+1, b=sqrt(3)-1, ((a+bi)/(a-bi)+(b+ai)/(b-ai))^10

 

$$\\\left(\frac{(a+bi)}{(a-bi)}+\frac{(b+ai)}{(b-ai)}\right)^{10} \\\\
=\left(\frac{(a+bi)(a+bi)}{(a-bi)(a+bi)}+\frac{(b+ai)(b+ai)}{(b-ai)(b+ai)}\right)^{10} \\\\
=\left(\frac{a^2-b^2+2abi}{a^2+b^2}+\frac{b^2-a^2+2abi}{b^2+a^2}\right)^{10} \\\\
=\left(\frac{a^2-b^2+2abi+b^2-a^2+2abi}{a^2+b^2}\right)^{10} \\\\
=\left(\frac{4abi}{a^2+b^2}\right)^{10} \\\\
$We are given that $\;\;\;\ a=(\sqrt3+1)\qquadand\qquad b=(\sqrt3-1)\\\\
=\left(\frac{4(\sqrt3+1)(\sqrt3-1)i}{(\sqrt3+1)^2+(\sqrt3-1)^2}\right)^{10} \\\\$$

$$\\=\left(\frac{4(3-1)i}{(3+1+2\sqrt3)+(3+1-2\sqrt3)}\right)^{10} \\\\
=\left(\frac{4(2)i}{8}\right)^{10} \\\\
=i^{10} \\\\
=(i^2)^5 \\\\
=(-1)^5 \\\\
=-1$$

Melody Aug 8, 2015

22 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.