We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
877
1
avatar

a=sqrt(3)+1, b=sqrt(3)-1, ((a+bi)/(a-bi)+(b+ai)/(b-ai))^10

 Aug 8, 2015

Best Answer 

 #1
avatar+103697 
+13

a=sqrt(3)+1, b=sqrt(3)-1, ((a+bi)/(a-bi)+(b+ai)/(b-ai))^10

 

$$\\\left(\frac{(a+bi)}{(a-bi)}+\frac{(b+ai)}{(b-ai)}\right)^{10} \\\\
=\left(\frac{(a+bi)(a+bi)}{(a-bi)(a+bi)}+\frac{(b+ai)(b+ai)}{(b-ai)(b+ai)}\right)^{10} \\\\
=\left(\frac{a^2-b^2+2abi}{a^2+b^2}+\frac{b^2-a^2+2abi}{b^2+a^2}\right)^{10} \\\\
=\left(\frac{a^2-b^2+2abi+b^2-a^2+2abi}{a^2+b^2}\right)^{10} \\\\
=\left(\frac{4abi}{a^2+b^2}\right)^{10} \\\\
$We are given that $\;\;\;\ a=(\sqrt3+1)\qquadand\qquad b=(\sqrt3-1)\\\\
=\left(\frac{4(\sqrt3+1)(\sqrt3-1)i}{(\sqrt3+1)^2+(\sqrt3-1)^2}\right)^{10} \\\\$$

$$\\=\left(\frac{4(3-1)i}{(3+1+2\sqrt3)+(3+1-2\sqrt3)}\right)^{10} \\\\
=\left(\frac{4(2)i}{8}\right)^{10} \\\\
=i^{10} \\\\
=(i^2)^5 \\\\
=(-1)^5 \\\\
=-1$$

.
 Aug 8, 2015
 #1
avatar+103697 
+13
Best Answer

a=sqrt(3)+1, b=sqrt(3)-1, ((a+bi)/(a-bi)+(b+ai)/(b-ai))^10

 

$$\\\left(\frac{(a+bi)}{(a-bi)}+\frac{(b+ai)}{(b-ai)}\right)^{10} \\\\
=\left(\frac{(a+bi)(a+bi)}{(a-bi)(a+bi)}+\frac{(b+ai)(b+ai)}{(b-ai)(b+ai)}\right)^{10} \\\\
=\left(\frac{a^2-b^2+2abi}{a^2+b^2}+\frac{b^2-a^2+2abi}{b^2+a^2}\right)^{10} \\\\
=\left(\frac{a^2-b^2+2abi+b^2-a^2+2abi}{a^2+b^2}\right)^{10} \\\\
=\left(\frac{4abi}{a^2+b^2}\right)^{10} \\\\
$We are given that $\;\;\;\ a=(\sqrt3+1)\qquadand\qquad b=(\sqrt3-1)\\\\
=\left(\frac{4(\sqrt3+1)(\sqrt3-1)i}{(\sqrt3+1)^2+(\sqrt3-1)^2}\right)^{10} \\\\$$

$$\\=\left(\frac{4(3-1)i}{(3+1+2\sqrt3)+(3+1-2\sqrt3)}\right)^{10} \\\\
=\left(\frac{4(2)i}{8}\right)^{10} \\\\
=i^{10} \\\\
=(i^2)^5 \\\\
=(-1)^5 \\\\
=-1$$

Melody Aug 8, 2015

7 Online Users

avatar