Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
908
2
avatar+78 

solve (e^x+3)/(4e^-x+5)=2

x=lna

 Aug 22, 2016
 #1
avatar+130477 
0

 (e^x+3)/(4e^-x+5)=2

 

e^x + 3   =  2 (4e^(-x) + 5)

 

e^x + 3  = 8e^(-x) + 10      

 

e^x - 8e^(-x) - 7  = 0       multiply through by  e^x

 

e^(2x) - 7e^x - 8  = 0       factor

 

(e^x + 1)  (e^x - 8)  = 0           setting both factors to  0

 

e^x + 1   = 0    has no real solutions

 

e^x - 8 = 0     add 8 to both sides

 

e^x = 8         take the ln of both sides

 

ln e ^x  = ln 8

 

x * ln e   = ln 8       [ ln e = 1, so we can disregard this ]

 

x = ln 8 

 

 

 

cool cool cool

 Aug 22, 2016
 #2
avatar+9675 
0

I am going to use another way to solve this equation.

aftenn provided a good start, Substitute x = ln a.......

ex+34ex+5=2ex+3=8ex+10elna+3=8elna+10a+3=8a+10a=8a+7a27a8=0(a+1)(a8)=0(ex+1)(ex8)=0Set each factor to 0ex=1 have no real solutionsPS: x=πi is a solution but it's not realex=8x=ln8

 

If you want imaginary solutions too x = pi(i) or x = ln 8

 Aug 23, 2016
edited by MaxWong  Aug 23, 2016

1 Online Users