+0  
 
+1
74
6
avatar+1254 

Solve for a in terms of b & c.

(Your answer should say a = and the other side of the equation will have a b and c in it).

 

(The last time I posted this I didn't have a specific math problem but now I do, sorry!)

 Jan 31, 2019
 #1
avatar+147 
+3

so we can multiply both sides by abc

 

bc + ac = ab

ac - ab = -bc

 

a(c-b) = -bc

 

-a(c-b) = bc

-a = bc/(c-b)

 

so 

 

a = bc/(c-b)

 Jan 31, 2019
 #2
avatar+1337 
+4

Solution:..

Answer:  

 

\(\large a=-\dfrac{bc}{c-b}\quad |\quad \:b\ne \:c\)

 

 

 

 

GA

 Jan 31, 2019
 #3
avatar+7220 
+4

\(\dfrac{1}{a} +\dfrac{1}{b}=\dfrac{1}c\\ \dfrac{1}a = \dfrac{1}c-\dfrac{1}b\\ \dfrac{1}a = \dfrac{b-c}{bc}\\ a = \dfrac{bc}{b-c}\)

.
 Feb 1, 2019
 #4
avatar+1337 
+6

Max, your way may be better. You need exceptions: \( b \ne c\) & \( (b * c) \ne 0\) .   

 

...Solution: 

 

\(\Large \frac{1}{a} \large abc+\Large \frac{1}{b} \large abc=\Large \frac{1}{c}\large abc\\ \large bc+ac=ab\\ \large bc+ac-bc=ab-bc\\ \large ac=ab-bc\\ \large ac-ab=ab-bc-ab\\ \large ac-ab=-bc\\ \large a\left(c-b\right)=-bc\\ \large \dfrac{a\left(c-b\right)}{c-b}=\dfrac{-bc}{c-b}\quad | \quad \:b\ne \:c\\ \text{ }\\ \LARGE a=-\dfrac{bc}{c-b}\quad | \quad \:b\ne \:c\\ \)

 

 

GA

 Feb 1, 2019
 #5
avatar
0

a =bc / (b - c) is eqivalent to a =- bc /(c - b) !!!.........(1)
Let a=2, b =3, c =? 

1/2 + 1/3 = 1/c                                                                                 
c = 6/5 . Sub these into (1) above:
2 =(3 * 6/5) /(3 - 6/5)
2 =3.6 / 1.8
2 = 2. 
Now sub into the 2nd solution:
2=-(3 *6/5) / (6/5 - 3)
2 =-3.6 / - 1.8
2 = 2

 Feb 1, 2019
 #6
avatar+1337 
+4

Mr. BB, your equation would be correct if you leave off the triple-factorial (!!!).

a =bc / (b - c) is eqivalent to a =- bc /(c - b) !!!   

I know you like these.  It does seem to be an ideal symbol for you –especially when used in this form: (!!!Mr. BB). Read as Triple Deranged Mr. BB

 

Until next time Mr. BB, keep up the Derangements!!!.        

 

GA

GingerAle  Feb 1, 2019

39 Online Users

avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.