+0  
 
0
219
3
avatar

a)

b)

Guest Dec 14, 2017
 #1
avatar
0

Solve for d:
1 = sin(d - π/4)

Reverse the equality in 1 = sin(d - π/4) in order to isolate d to the left hand side.
1 = sin(d - π/4) is equivalent to sin(d - π/4) = 1:
sin(d - π/4) = 1

Eliminate the sine from the left hand side.
Take the inverse sine of both sides:
d - π/4 = 2 π n + π/2 for n element Z

Solve for d.
Add π/4 to both sides:
d = 2 π n + (3 π)/4 for n element Z

 

 

Solve for d:
1 = sin(2 (π - d))

Reverse the equality in 1 = sin(2 (π - d)) in order to isolate d to the left hand side.
1 = sin(2 (π - d)) is equivalent to sin(2 (π - d)) = 1:
sin(2 (π - d)) = 1

Eliminate the sine from the left hand side.
Take the inverse sine of both sides:
2 (π - d) = 2 π n + π/2 for n element Z

Divide both sides by a constant to simplify the equation.
Divide both sides by 2:
π - d = π n + π/4 for n element Z

Isolate terms with d to the left-hand side.
Subtract π from both sides:
-d = π n - (3 π)/4 for n element Z

Solve for d.
Multiply both sides by -1:
d = (3 π)/4 - π n for n element Z

Guest Dec 14, 2017
 #2
avatar
0

a) d= -86.0730091830127585

b) d= -41.8584073464102068

 

  1. *I just used the calculator: web2.0calc.com/
Guest Dec 15, 2017
 #3
avatar+87571 
+1

1  =  sin  (5pi/4 -  d)

 

arcsin 1  =   arcsin  [ sin (5pi/4  - d) ]

 

pi/2   =  5pi/4  -  d

 

d  = 5pi/4  - pi/2

 

 d  = 5pi/4  - 2pi/4

 

d = 3pi/4  + n* 2pi       where n is an integer

 

 

 

1  =  sin [ 2 (pi -d)]

 

arcsin 1  =  arcsin  [sin [2(pi - d ) ]

 

pi/2   = 2 (pi - d)        divide both sides by 2

 

pi/4   = pi - d

 

d = pi  - pi/4

 

d  = 3pi/4  +  n * 2 pi      where n is an integer

 

 

 

cool cool cool

CPhill  Dec 15, 2017

9 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.