We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
358
3
avatar

a)

b)

 Dec 14, 2017
 #1
avatar
0

Solve for d:
1 = sin(d - π/4)

Reverse the equality in 1 = sin(d - π/4) in order to isolate d to the left hand side.
1 = sin(d - π/4) is equivalent to sin(d - π/4) = 1:
sin(d - π/4) = 1

Eliminate the sine from the left hand side.
Take the inverse sine of both sides:
d - π/4 = 2 π n + π/2 for n element Z

Solve for d.
Add π/4 to both sides:
d = 2 π n + (3 π)/4 for n element Z

 

 

Solve for d:
1 = sin(2 (π - d))

Reverse the equality in 1 = sin(2 (π - d)) in order to isolate d to the left hand side.
1 = sin(2 (π - d)) is equivalent to sin(2 (π - d)) = 1:
sin(2 (π - d)) = 1

Eliminate the sine from the left hand side.
Take the inverse sine of both sides:
2 (π - d) = 2 π n + π/2 for n element Z

Divide both sides by a constant to simplify the equation.
Divide both sides by 2:
π - d = π n + π/4 for n element Z

Isolate terms with d to the left-hand side.
Subtract π from both sides:
-d = π n - (3 π)/4 for n element Z

Solve for d.
Multiply both sides by -1:
d = (3 π)/4 - π n for n element Z

 Dec 14, 2017
 #2
avatar
0

a) d= -86.0730091830127585

b) d= -41.8584073464102068

 

  1. *I just used the calculator: web2.0calc.com/
 Dec 15, 2017
 #3
avatar+100571 
+1

1  =  sin  (5pi/4 -  d)

 

arcsin 1  =   arcsin  [ sin (5pi/4  - d) ]

 

pi/2   =  5pi/4  -  d

 

d  = 5pi/4  - pi/2

 

 d  = 5pi/4  - 2pi/4

 

d = 3pi/4  + n* 2pi       where n is an integer

 

 

 

1  =  sin [ 2 (pi -d)]

 

arcsin 1  =  arcsin  [sin [2(pi - d ) ]

 

pi/2   = 2 (pi - d)        divide both sides by 2

 

pi/4   = pi - d

 

d = pi  - pi/4

 

d  = 3pi/4  +  n * 2 pi      where n is an integer

 

 

 

cool cool cool

 Dec 15, 2017

27 Online Users

avatar
avatar
avatar
avatar
avatar