+0  
 
0
778
1
avatar

v=4/3(3.14)r^3

How do i solve for r

 Jun 17, 2015

Best Answer 

 #1
avatar+14538 
+5

$${\mathtt{V}} = {\frac{{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{3.14}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{3}}}}{{\mathtt{3}}}}$$

 

$${{\mathtt{r}}}^{{\mathtt{3}}} = {\frac{{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{V}}}{\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{3.14}}\right)}}$$             =>       $${\mathtt{r}} = {\sqrt[{{\mathtt{{\mathtt{3}}}}}]{{\frac{{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{V}}}{\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{3.14}}\right)}}}}$$

 

$${\sqrt[{{\mathtt{{\mathtt{3}}}}}]{{\frac{{\mathtt{3}}}{\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{3.14}}\right)}}}} = {\mathtt{0.620\: \!455\: \!356\: \!763\: \!528}}$$   

 

               $${\mathtt{r}} = {\mathtt{0.620\: \!455}}{\mathtt{\,\times\,}}{\sqrt[{{\mathtt{{\mathtt{3}}}}}]{{\mathtt{V}}}}$$

.
 Jun 17, 2015
 #1
avatar+14538 
+5
Best Answer

$${\mathtt{V}} = {\frac{{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{3.14}}{\mathtt{\,\times\,}}{{\mathtt{r}}}^{{\mathtt{3}}}}{{\mathtt{3}}}}$$

 

$${{\mathtt{r}}}^{{\mathtt{3}}} = {\frac{{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{V}}}{\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{3.14}}\right)}}$$             =>       $${\mathtt{r}} = {\sqrt[{{\mathtt{{\mathtt{3}}}}}]{{\frac{{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{V}}}{\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{3.14}}\right)}}}}$$

 

$${\sqrt[{{\mathtt{{\mathtt{3}}}}}]{{\frac{{\mathtt{3}}}{\left({\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{3.14}}\right)}}}} = {\mathtt{0.620\: \!455\: \!356\: \!763\: \!528}}$$   

 

               $${\mathtt{r}} = {\mathtt{0.620\: \!455}}{\mathtt{\,\times\,}}{\sqrt[{{\mathtt{{\mathtt{3}}}}}]{{\mathtt{V}}}}$$

radix Jun 17, 2015

1 Online Users