We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
54
3
avatar+89 

Question: Solve for the length of segment AB using an equation based on the phythagorean theorem

My attempt was:

AB^2= AC^2+BC^2

AB^2=Z^2+6^2

AB=Z^2+36

And I feel that I'm not doing it right...so please help! I'm struggling a bit with this one

 Sep 6, 2019

Best Answer 

 #1
avatar+23086 
+3

Solve for the length of segment AB using an equation based on the phythagorean theorem:

 

 

\(\begin{array}{|rcll|} \hline AB^2 &=& AC^2+BC^2 \quad | \quad AB = z+2,\ AC = z,\ BC=6 \\ \left(z+2\right)^2 &=& z^2+6^2 \\ \not{z^2}+4z+4 &=& \not{z^2}+ 36\\ 4z+4 &=& 36 \quad | \quad -4 \\ 4z &=& 32 \quad | \quad :4 \\\\ z &=& \dfrac{32}{4} \\\\ \mathbf{ z } &=& \mathbf{8} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline AB &=& z+2 \quad | \quad z=8 \\ AB &=& 8+2 \\ \mathbf{ AB } &=& \mathbf{10} \\ \hline \end{array}\)

 

check:

\(\begin{array}{|rcll|} \hline (z+2)^2 &=& z^2+6^2 \\ (8+2)^2 &=& 8^2+6^2\\ 10^2 &=& 8^2 +6^2 \\ 100 &=& 64 + 36 \\ 100 &=& 100\ \checkmark \\ \hline \end{array}\)

 

laugh

 Sep 6, 2019
 #1
avatar+23086 
+3
Best Answer

Solve for the length of segment AB using an equation based on the phythagorean theorem:

 

 

\(\begin{array}{|rcll|} \hline AB^2 &=& AC^2+BC^2 \quad | \quad AB = z+2,\ AC = z,\ BC=6 \\ \left(z+2\right)^2 &=& z^2+6^2 \\ \not{z^2}+4z+4 &=& \not{z^2}+ 36\\ 4z+4 &=& 36 \quad | \quad -4 \\ 4z &=& 32 \quad | \quad :4 \\\\ z &=& \dfrac{32}{4} \\\\ \mathbf{ z } &=& \mathbf{8} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline AB &=& z+2 \quad | \quad z=8 \\ AB &=& 8+2 \\ \mathbf{ AB } &=& \mathbf{10} \\ \hline \end{array}\)

 

check:

\(\begin{array}{|rcll|} \hline (z+2)^2 &=& z^2+6^2 \\ (8+2)^2 &=& 8^2+6^2\\ 10^2 &=& 8^2 +6^2 \\ 100 &=& 64 + 36 \\ 100 &=& 100\ \checkmark \\ \hline \end{array}\)

 

laugh

heureka Sep 6, 2019
 #2
avatar+89 
+2

Thank you so much for this! I'm glad I didn't start too far off the grid. I just can't believe I was so stumped on this question, you explained it so thoroughly :)

Roxettna  Sep 6, 2019
edited by Roxettna  Sep 6, 2019
 #3
avatar+23086 
+2

Thank you, Roxettna !

 

laugh

heureka  Sep 6, 2019

26 Online Users

avatar