+0  
 
+1
433
3
avatar

Solve for X given : 5.52 = -ln(-ln - (1-(1/X)))

Guest May 17, 2017
 #1
avatar+89889 
+1

 

Got no idea how to step through this  [ maybe someone else does ???  ]

 

WolframAlpha  gives the answer  as    X ≈ 0.501001460646335

 

https://www.wolframalpha.com/input/?i=5.52+%3D+-ln(-ln+-+(1-(1%2FX)))

 

 

 

cool cool cool

CPhill  May 17, 2017
 #2
avatar+27042 
0

Here are the steps:

 

.

Alan  May 17, 2017
 #3
avatar+20024 
0

Solve for X given : 5.52 = -ln( -ln( -(1-1/X) ))

\(\begin{array}{|rcll|} \hline 5.52 &=& -\ln \Big( -\ln ( -(1-\frac{1}{x} ) ) \Big) \\ 5.52 &=& -\ln \Big( -\ln( \frac{1}{x}-1 ) \Big) \\ -5.52 &=& \ln \Big( -\ln( \frac{1}{x}-1 ) \Big) \quad & | \quad e^{()} \\ e^{-5.52} &=& -\ln( \frac{1}{x}-1 ) \\ -e^{-5.52} &=& \ln( \frac{1}{x}-1 ) \quad & | \quad e^{()} \\ e^{(-e^{-5.52})} &=& \frac{1}{x}-1 \\ 1+e^{(-e^{-5.52})} &=& \frac{1}{x} \\ \dfrac{1}{1+e^{(-e^{-5.52})} } &=& x \\ x &=& \dfrac{1}{1+e^{(-e^{-5.52})} } \\ x &=& \dfrac{1}{1+e^{(-0.00400584794)} } \\ x &=& \dfrac{1}{1+0.99600216476 } \\ x &=& \dfrac{1}{1.99600216476 } \\\\ \mathbf{x} & \mathbf{=} & \mathbf{0.50100146065} \\ \hline \end{array}\)

 

laugh

heureka  May 17, 2017

29 Online Users

avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.