We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
162
1
avatar

Solve for x on the interval [0,2pi]

 Oct 30, 2018
 #1
avatar+102948 
+1

15sin^2 (2x)  = 1 + sin (2x)

                        _________          multiply both sides by 2

                              2

 

30sin^2(2x)  =  1 + sin(2x)     rearrange  as

 

30sin^2(2x) - sin(2x) - 1   =  0       factor

 

(6 sin (2x)  + 1)  ( 5sin (2x) - 1)  = 0

 

Set each factor to 0  and solve for x

 

6sin(2x) + 1   =  0

6sin(2x)  = -1

sin(2x)  = -1/6

sin(x)  = -1/6  at  ≈ 3.309 rads , 6.12 rads, 9.59 rads  and 12.40 rads

So dividing each of these by 2 we get

x ≈ 1.6545 rads, 3.06 rads, 4.795 rads and 6.20 rads

 

And

5sin (2x)  - 1  = 0

5sin (2x) = 1

sin(2x) = 1/5   at  ≈ .201 rads, 2.94 rads, 6.48 rads, 9.22 rads

Divide both of these by 2 and we get

x ≈ .105 rads, 1.97 rads, 3.24 rads and 4.61rads

 

 

 

cool cool cool

 Oct 31, 2018

36 Online Users

avatar
avatar
avatar
avatar