We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
426
1
avatar

x+1-2sqrt(x+4)=0

 Aug 30, 2017
edited by Guest  Aug 30, 2017

Best Answer 

 #1
avatar+22182 
+3

Solve for X

x+1-2sqrt(x+4)=0

 

\(\begin{array}{|rcll|} \hline x+1-2\sqrt{x+4} &=& 0 \quad & | \quad +2\sqrt{x+4} \\ x+1 &=& 2\sqrt{x+4} \quad & | \quad \text{square both sides} \\ (x+1)^2 &=& 4(x+4) \\ x^2+2x+1 &=& 4x+16 \\ x^2+2x+1 &=& 4x+16 \quad & | \quad -4x \\ x^2+2x-4x+1 &=& 16 \\ x^2-2x+1 &=& 16 \quad & | \quad - 16 \\ x^2-2x+1-16 &=& 0 \\ x^2-2x-15 &=& 0 \\ (x-5)(x+3) &=& 0 \\\\ x_1 = 5 & \text{ or } & x_2 = -3 \\ \hline \end{array} \)

 

Proof:

\(x_1 = 5:\)
\(\begin{array}{|rcll|} \hline 5+1-2\sqrt{5+4} &\overset{?}{=}& 0 \\ 6-2\sqrt{9} &\overset{?}{=}& 0 \\ 6-2\cdot 3 &\overset{?}{=}& 0 \\ 6-6 &\overset{?}{=}& 0 \\ 0 &\overset{!}{=}& 0 \\\\ x = 5 \text{ is a solution } \\ \hline \end{array} \)

 

\(x_2 = -3\)
\(\begin{array}{|rcll|} \hline -3+1-2\sqrt{-3+4} &\overset{?}{=}& 0 \\ -2-2\sqrt{1} &\overset{?}{=}& 0 \\ -2-2\cdot 1 &\overset{?}{=}& 0 \\ -2-2 &\overset{?}{=}& 0 \\ -4 &\ne & 0 \\\\ x = -3 \text{ is not a solution } \\ \hline \end{array}\)

 

The only solution is x = 5

 

laugh

 Aug 30, 2017
 #1
avatar+22182 
+3
Best Answer

Solve for X

x+1-2sqrt(x+4)=0

 

\(\begin{array}{|rcll|} \hline x+1-2\sqrt{x+4} &=& 0 \quad & | \quad +2\sqrt{x+4} \\ x+1 &=& 2\sqrt{x+4} \quad & | \quad \text{square both sides} \\ (x+1)^2 &=& 4(x+4) \\ x^2+2x+1 &=& 4x+16 \\ x^2+2x+1 &=& 4x+16 \quad & | \quad -4x \\ x^2+2x-4x+1 &=& 16 \\ x^2-2x+1 &=& 16 \quad & | \quad - 16 \\ x^2-2x+1-16 &=& 0 \\ x^2-2x-15 &=& 0 \\ (x-5)(x+3) &=& 0 \\\\ x_1 = 5 & \text{ or } & x_2 = -3 \\ \hline \end{array} \)

 

Proof:

\(x_1 = 5:\)
\(\begin{array}{|rcll|} \hline 5+1-2\sqrt{5+4} &\overset{?}{=}& 0 \\ 6-2\sqrt{9} &\overset{?}{=}& 0 \\ 6-2\cdot 3 &\overset{?}{=}& 0 \\ 6-6 &\overset{?}{=}& 0 \\ 0 &\overset{!}{=}& 0 \\\\ x = 5 \text{ is a solution } \\ \hline \end{array} \)

 

\(x_2 = -3\)
\(\begin{array}{|rcll|} \hline -3+1-2\sqrt{-3+4} &\overset{?}{=}& 0 \\ -2-2\sqrt{1} &\overset{?}{=}& 0 \\ -2-2\cdot 1 &\overset{?}{=}& 0 \\ -2-2 &\overset{?}{=}& 0 \\ -4 &\ne & 0 \\\\ x = -3 \text{ is not a solution } \\ \hline \end{array}\)

 

The only solution is x = 5

 

laugh

heureka Aug 30, 2017

20 Online Users

avatar