+0  
 
0
318
1
avatar

x+1-2sqrt(x+4)=0

Guest Aug 30, 2017
edited by Guest  Aug 30, 2017

Best Answer 

 #1
avatar+20025 
+3

Solve for X

x+1-2sqrt(x+4)=0

 

\(\begin{array}{|rcll|} \hline x+1-2\sqrt{x+4} &=& 0 \quad & | \quad +2\sqrt{x+4} \\ x+1 &=& 2\sqrt{x+4} \quad & | \quad \text{square both sides} \\ (x+1)^2 &=& 4(x+4) \\ x^2+2x+1 &=& 4x+16 \\ x^2+2x+1 &=& 4x+16 \quad & | \quad -4x \\ x^2+2x-4x+1 &=& 16 \\ x^2-2x+1 &=& 16 \quad & | \quad - 16 \\ x^2-2x+1-16 &=& 0 \\ x^2-2x-15 &=& 0 \\ (x-5)(x+3) &=& 0 \\\\ x_1 = 5 & \text{ or } & x_2 = -3 \\ \hline \end{array} \)

 

Proof:

\(x_1 = 5:\)
\(\begin{array}{|rcll|} \hline 5+1-2\sqrt{5+4} &\overset{?}{=}& 0 \\ 6-2\sqrt{9} &\overset{?}{=}& 0 \\ 6-2\cdot 3 &\overset{?}{=}& 0 \\ 6-6 &\overset{?}{=}& 0 \\ 0 &\overset{!}{=}& 0 \\\\ x = 5 \text{ is a solution } \\ \hline \end{array} \)

 

\(x_2 = -3\)
\(\begin{array}{|rcll|} \hline -3+1-2\sqrt{-3+4} &\overset{?}{=}& 0 \\ -2-2\sqrt{1} &\overset{?}{=}& 0 \\ -2-2\cdot 1 &\overset{?}{=}& 0 \\ -2-2 &\overset{?}{=}& 0 \\ -4 &\ne & 0 \\\\ x = -3 \text{ is not a solution } \\ \hline \end{array}\)

 

The only solution is x = 5

 

laugh

heureka  Aug 30, 2017
 #1
avatar+20025 
+3
Best Answer

Solve for X

x+1-2sqrt(x+4)=0

 

\(\begin{array}{|rcll|} \hline x+1-2\sqrt{x+4} &=& 0 \quad & | \quad +2\sqrt{x+4} \\ x+1 &=& 2\sqrt{x+4} \quad & | \quad \text{square both sides} \\ (x+1)^2 &=& 4(x+4) \\ x^2+2x+1 &=& 4x+16 \\ x^2+2x+1 &=& 4x+16 \quad & | \quad -4x \\ x^2+2x-4x+1 &=& 16 \\ x^2-2x+1 &=& 16 \quad & | \quad - 16 \\ x^2-2x+1-16 &=& 0 \\ x^2-2x-15 &=& 0 \\ (x-5)(x+3) &=& 0 \\\\ x_1 = 5 & \text{ or } & x_2 = -3 \\ \hline \end{array} \)

 

Proof:

\(x_1 = 5:\)
\(\begin{array}{|rcll|} \hline 5+1-2\sqrt{5+4} &\overset{?}{=}& 0 \\ 6-2\sqrt{9} &\overset{?}{=}& 0 \\ 6-2\cdot 3 &\overset{?}{=}& 0 \\ 6-6 &\overset{?}{=}& 0 \\ 0 &\overset{!}{=}& 0 \\\\ x = 5 \text{ is a solution } \\ \hline \end{array} \)

 

\(x_2 = -3\)
\(\begin{array}{|rcll|} \hline -3+1-2\sqrt{-3+4} &\overset{?}{=}& 0 \\ -2-2\sqrt{1} &\overset{?}{=}& 0 \\ -2-2\cdot 1 &\overset{?}{=}& 0 \\ -2-2 &\overset{?}{=}& 0 \\ -4 &\ne & 0 \\\\ x = -3 \text{ is not a solution } \\ \hline \end{array}\)

 

The only solution is x = 5

 

laugh

heureka  Aug 30, 2017

8 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.