+0  
 
+1
84
1
avatar+81 

 Solve for x :

 

\(\log_{5} x + \log_{5} (x - 5) = 5\)

 

 A=

B=

There are two potential roots, A and B, where .\(A \leq B.\)

Sloan  Jun 6, 2018
 #1
avatar+87562 
+1

log 5 x + log 5 (x -5)  = 5

 

log 5 [ x * (x - 5) ]  = 5        we have that

 

5^5   =  x ( x - 5)

 

5^5  = x^2 - 5x      rearrange as

 

x^2  - 5x - 5^5  = 0     solving this we have that

 

x  = [5 + 5√501] / 2    or  x  =  [ 5 - 5√501] / 2

 

The second answer results in the log of a negative

 

So....the only answer  is     x  =  [  5 + 5√501] / 2

 

 

cool cool cool

CPhill  Jun 6, 2018

16 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.