+0  
 
0
56
1
avatar

I need understanding and help solving

Guest Jun 29, 2018

Best Answer 

 #1
avatar+7154 
+2

\(\sin(x +\frac{11\pi}{6})\,-\,\sin(x -\frac{11\pi}{6})\,=\,1\)

 

We can use the sum of angles formula for sine:

 

\(\sin(\alpha \pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta\\~\\ \ \\ {\color{BlueViolet} \sin(x +\frac{11\pi}{6})=\sin x\cos\frac{11\pi}{6}+\cos x\sin\frac{11\pi}{6}\quad=(\sin x)(\frac{\sqrt3}{2})+(\cos x)(-\frac12)}\\~\\ {\color{Fuchsia} \sin(x -\frac{11\pi}{6})=\sin x\cos\frac{11\pi}{6}-\cos x\sin\frac{11\pi}{6}\quad=(\sin x)(\frac{\sqrt3}{2})-(\cos x)(-\frac12)}\)

 

 

So if...

 

\({\color{BlueViolet}\sin(x +\frac{11\pi}{6})}\,-\,{\color{Fuchsia}\sin(x -\frac{11\pi}{6})}\,=\,1\\~\\ [\,{\color{BlueViolet}(\sin x)(\frac{\sqrt3}{2})+(\cos x)(-\frac12)}\,]\,-\,[\,{\color{Fuchsia}(\sin x)(\frac{\sqrt3}{2})-(\cos x)(-\frac12)}\,]\,=\,1\\~\\ (\sin x)(\frac{\sqrt3}{2})+(\cos x)(-\frac12)-(\sin x)(\frac{\sqrt3}{2})+(\cos x)(-\frac12)\,=\,1\\~\\ 2(\cos x)(-\frac12)\,=\,1\\~\\ - \cos x\,=\,1\\~\\ \cos x\,=\,-1\\~\\ x\,=\,\pi+2\pi n\quad \text{, where }\ n\ \text{ is an integer.}\)      then...

hectictar  Jun 29, 2018
 #1
avatar+7154 
+2
Best Answer

\(\sin(x +\frac{11\pi}{6})\,-\,\sin(x -\frac{11\pi}{6})\,=\,1\)

 

We can use the sum of angles formula for sine:

 

\(\sin(\alpha \pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta\\~\\ \ \\ {\color{BlueViolet} \sin(x +\frac{11\pi}{6})=\sin x\cos\frac{11\pi}{6}+\cos x\sin\frac{11\pi}{6}\quad=(\sin x)(\frac{\sqrt3}{2})+(\cos x)(-\frac12)}\\~\\ {\color{Fuchsia} \sin(x -\frac{11\pi}{6})=\sin x\cos\frac{11\pi}{6}-\cos x\sin\frac{11\pi}{6}\quad=(\sin x)(\frac{\sqrt3}{2})-(\cos x)(-\frac12)}\)

 

 

So if...

 

\({\color{BlueViolet}\sin(x +\frac{11\pi}{6})}\,-\,{\color{Fuchsia}\sin(x -\frac{11\pi}{6})}\,=\,1\\~\\ [\,{\color{BlueViolet}(\sin x)(\frac{\sqrt3}{2})+(\cos x)(-\frac12)}\,]\,-\,[\,{\color{Fuchsia}(\sin x)(\frac{\sqrt3}{2})-(\cos x)(-\frac12)}\,]\,=\,1\\~\\ (\sin x)(\frac{\sqrt3}{2})+(\cos x)(-\frac12)-(\sin x)(\frac{\sqrt3}{2})+(\cos x)(-\frac12)\,=\,1\\~\\ 2(\cos x)(-\frac12)\,=\,1\\~\\ - \cos x\,=\,1\\~\\ \cos x\,=\,-1\\~\\ x\,=\,\pi+2\pi n\quad \text{, where }\ n\ \text{ is an integer.}\)      then...

hectictar  Jun 29, 2018

6 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.