+0  
 
0
272
1
avatar

I need understanding and help solving

 Jun 29, 2018

Best Answer 

 #1
avatar+7347 
+2

\(\sin(x +\frac{11\pi}{6})\,-\,\sin(x -\frac{11\pi}{6})\,=\,1\)

 

We can use the sum of angles formula for sine:

 

\(\sin(\alpha \pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta\\~\\ \ \\ {\color{BlueViolet} \sin(x +\frac{11\pi}{6})=\sin x\cos\frac{11\pi}{6}+\cos x\sin\frac{11\pi}{6}\quad=(\sin x)(\frac{\sqrt3}{2})+(\cos x)(-\frac12)}\\~\\ {\color{Fuchsia} \sin(x -\frac{11\pi}{6})=\sin x\cos\frac{11\pi}{6}-\cos x\sin\frac{11\pi}{6}\quad=(\sin x)(\frac{\sqrt3}{2})-(\cos x)(-\frac12)}\)

 

 

So if...

 

\({\color{BlueViolet}\sin(x +\frac{11\pi}{6})}\,-\,{\color{Fuchsia}\sin(x -\frac{11\pi}{6})}\,=\,1\\~\\ [\,{\color{BlueViolet}(\sin x)(\frac{\sqrt3}{2})+(\cos x)(-\frac12)}\,]\,-\,[\,{\color{Fuchsia}(\sin x)(\frac{\sqrt3}{2})-(\cos x)(-\frac12)}\,]\,=\,1\\~\\ (\sin x)(\frac{\sqrt3}{2})+(\cos x)(-\frac12)-(\sin x)(\frac{\sqrt3}{2})+(\cos x)(-\frac12)\,=\,1\\~\\ 2(\cos x)(-\frac12)\,=\,1\\~\\ - \cos x\,=\,1\\~\\ \cos x\,=\,-1\\~\\ x\,=\,\pi+2\pi n\quad \text{, where }\ n\ \text{ is an integer.}\)      then...

 Jun 29, 2018
 #1
avatar+7347 
+2
Best Answer

\(\sin(x +\frac{11\pi}{6})\,-\,\sin(x -\frac{11\pi}{6})\,=\,1\)

 

We can use the sum of angles formula for sine:

 

\(\sin(\alpha \pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta\\~\\ \ \\ {\color{BlueViolet} \sin(x +\frac{11\pi}{6})=\sin x\cos\frac{11\pi}{6}+\cos x\sin\frac{11\pi}{6}\quad=(\sin x)(\frac{\sqrt3}{2})+(\cos x)(-\frac12)}\\~\\ {\color{Fuchsia} \sin(x -\frac{11\pi}{6})=\sin x\cos\frac{11\pi}{6}-\cos x\sin\frac{11\pi}{6}\quad=(\sin x)(\frac{\sqrt3}{2})-(\cos x)(-\frac12)}\)

 

 

So if...

 

\({\color{BlueViolet}\sin(x +\frac{11\pi}{6})}\,-\,{\color{Fuchsia}\sin(x -\frac{11\pi}{6})}\,=\,1\\~\\ [\,{\color{BlueViolet}(\sin x)(\frac{\sqrt3}{2})+(\cos x)(-\frac12)}\,]\,-\,[\,{\color{Fuchsia}(\sin x)(\frac{\sqrt3}{2})-(\cos x)(-\frac12)}\,]\,=\,1\\~\\ (\sin x)(\frac{\sqrt3}{2})+(\cos x)(-\frac12)-(\sin x)(\frac{\sqrt3}{2})+(\cos x)(-\frac12)\,=\,1\\~\\ 2(\cos x)(-\frac12)\,=\,1\\~\\ - \cos x\,=\,1\\~\\ \cos x\,=\,-1\\~\\ x\,=\,\pi+2\pi n\quad \text{, where }\ n\ \text{ is an integer.}\)      then...

hectictar Jun 29, 2018

20 Online Users

avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.