+0  
 
0
530
1
avatar

sqrt(7)^log5 - sqrt(5)^log7

Guest Jun 24, 2017
 #1
avatar+87334 
+1

 

There's nothing here to "solve".....just to evaluate..

 

√7^(log 5) - √5^(log 7)  =

 

[7^(1/2)]^(log 5)   - [ 5^(1/2)]^(log 7)=

 

[ 7] ^[ (1/2)log(5) ] - [5]^[ (1/2)log(7)]

 

[7] ^ [log √5]  -  [5]^[log √7 ]     note that we can write

 

[10^(log7)]^[log5]  - [10^(log 5)]^[log 7]

 

10 ^(log7 * log 5)  - 10^(log 5 * log 7)  =

 

10^(log5 * log 7) - 10^(log 5 * log7)  =

 

0

 

 

Then.....it  appears that we have the property that

 

a^(log b)  - b^(log a)   = 0

 

 

cool cool cool

CPhill  Jun 24, 2017

7 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.