+0  
 
0
1806
3
avatar

Solve the equation for exact solutions in the interval [0,360). sin2Theta = 2cos^2Theta

 

Solve the equation. arcsinx-2arcc sqrt(3)/2 = pi/3

 

I don't understand what you're suppose to do are you suppose to get x by it self or am I suppose to use a identitie, I really have no idea.

 

And what is the difference between "solve the equation for exact solutions" compared to just "solve the equation"

 Nov 12, 2015

Best Answer 

 #1
avatar+130555 
+10

sin^2 (theta)  = 2cos^2(theta)

 

sin^2(theta)  = 2[ 1 - sin^2(theta)]

 

sin^2(theta)  = 2 - 2 sin^2(theta)       add 2 sin^2(theta)  to both sides

 

3sin^2(theta)   = 2     divide both sides by 3

 

sin^2(theta)  = 2/3      take the positive/negative sqrt 

 

sin(theta)  =  sqrt (2/3)          and       sin(theta)  =  - sqrt(2/3)

 

Using the arcsin  we have

 

arcsin[ sqrt(2/3)]   = about 54.74°   and  about  (180 - 54.74)°  = 125.26°

 

arcsin [ - sqrt(2/3)]  =  about  - 54.74°   =  (180 + 54.74) ° =  about 234.74°   and about (360 - 54.74)° = about 305.26°

 

Here's a graph of the intersection points of the two functions........https://www.desmos.com/calculator/8bcyqeldft

 

[ For your second question, what is "arcc"  ???]

 

 

cool cool cool

 Nov 12, 2015
 #1
avatar+130555 
+10
Best Answer

sin^2 (theta)  = 2cos^2(theta)

 

sin^2(theta)  = 2[ 1 - sin^2(theta)]

 

sin^2(theta)  = 2 - 2 sin^2(theta)       add 2 sin^2(theta)  to both sides

 

3sin^2(theta)   = 2     divide both sides by 3

 

sin^2(theta)  = 2/3      take the positive/negative sqrt 

 

sin(theta)  =  sqrt (2/3)          and       sin(theta)  =  - sqrt(2/3)

 

Using the arcsin  we have

 

arcsin[ sqrt(2/3)]   = about 54.74°   and  about  (180 - 54.74)°  = 125.26°

 

arcsin [ - sqrt(2/3)]  =  about  - 54.74°   =  (180 + 54.74) ° =  about 234.74°   and about (360 - 54.74)° = about 305.26°

 

Here's a graph of the intersection points of the two functions........https://www.desmos.com/calculator/8bcyqeldft

 

[ For your second question, what is "arcc"  ???]

 

 

cool cool cool

CPhill Nov 12, 2015
 #2
avatar
0

Sorry i ment to say 2arccos not arcc

 

and thank you very much!

 Nov 12, 2015
 #3
avatar+130555 
+10

Here's the second one :

 

 arcsinx-2arccos sqrt(3)/2 = pi/3           [ arccos sqrt(3/2)  has two values on [0, 2pi] .......pi/6    and 11pi/6 ]

 

So we have

 

arc sinx - 2[pi6]   = pi/3

 

arcsinx - pi/3  =   pi/3       add pi/3 to both sides

 

arcsinx =   2pi/3

 

Notice that no solution exists, because the sine's greatest value =  1....so we are trying to find an angle whose sine = 2pi/3 .......  and  2pi/3 > 1, so this doesn't angle exist

 

Also........if we calculated this for 11pi/ 6, we would have the same problem

 

arcsinx - 2 [11pi/6]  = pi/3

 

arcsinx - 11pi/3 =  pi/3

 

arcsinx = 12pi/3    = 4pi       and this is much greater than 1

 

So........no solution exists for the second problem

 

 

cool cool cool

 Nov 12, 2015
edited by CPhill  Nov 12, 2015

0 Online Users