+0  
 
0
75
1
avatar

Solve the equation in (0, 2pi) using any appropriate method. Answer in radians rounded to four decimal places.

\(\frac{1-sin^2x}{cot^2 x} =\frac{\sqrt{3}}{3}\)

 

a. 0.8631, 2.2785, 4.0047, 5.4201 

b. 0.6888, 2.4528, 3.8304, 5.5944

c. 0.8631, 0.7077, 2.4339, 2.2785

d. 0.6888, 08820, 2.4339, 2.4528

Guest Sep 6, 2017
Sort: 

1+0 Answers

 #1
avatar+78643 
+1

 [ 1 - sin^2 (x) ] / cot^2 (x)  =

 

[ cos ^2 (x) ] /  [ cos^2 (x) / sin^2(x) ]

 

sin^2 (x) =   sqrt (3)  / 3         take both roots

 

sin (x)  =   ± sqrt ( 1/ √ 3) 

 

So.....      arcsin (  sqrt ( 1/ √ 3)  )  ≈  0.8631       and    pi - 0.8631 ≈  2.2785

 

And   arcsin ( -  sqrt ( 1/ √ 3)  )  ≈   5.4201    and   pi + 0.8631  ≈  4.0047

 

The first answer is correct

 

 

cool cool cool

CPhill  Sep 6, 2017

5 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details