p^2 + 4p + 51 = 0 ....this has no "real" solutions.....using the quadratic formula built into the onsite solver, we have.....
$${{\mathtt{p}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{p}}{\mathtt{\,\small\textbf+\,}}{\mathtt{51}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{p}} = {\mathtt{\,-\,}}{\sqrt{{\mathtt{47}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{2}}\\
{\mathtt{p}} = {\sqrt{{\mathtt{47}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{2}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{p}} = {\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,-\,}}{\mathtt{6.855\: \!654\: \!600\: \!401\: \!044\: \!1}}{i}\\
{\mathtt{p}} = {\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6.855\: \!654\: \!600\: \!401\: \!044\: \!1}}{i}\\
\end{array} \right\}$$
p^2 + 4p + 51 = 0 ....this has no "real" solutions.....using the quadratic formula built into the onsite solver, we have.....
$${{\mathtt{p}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{p}}{\mathtt{\,\small\textbf+\,}}{\mathtt{51}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{p}} = {\mathtt{\,-\,}}{\sqrt{{\mathtt{47}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{2}}\\
{\mathtt{p}} = {\sqrt{{\mathtt{47}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{2}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{p}} = {\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,-\,}}{\mathtt{6.855\: \!654\: \!600\: \!401\: \!044\: \!1}}{i}\\
{\mathtt{p}} = {\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6.855\: \!654\: \!600\: \!401\: \!044\: \!1}}{i}\\
\end{array} \right\}$$