+0  
 
0
934
2
avatar

Solve the system by substitution if possible

{ 8x+3y=40     16x+6y=41

 

a. (10, –5)

b. (–2, –8)

c. (–6,11)

d. (9, 2)

e. no solution; inconsistent system 

 

 

Solve the system, if possible.

{9x + 3y + 4z = -94       5x−5y+2z=2       6x − 7y − 10z = 6 

 

a. x=–7,y=–6,z=4 

b. x=–6,y=–8,z=–4

c. x=6,y=8,z=4

d. x=–14,y=3,z=4

e. no solution; inconsistent system 

 Aug 26, 2016
 #1
avatar+130560 
0

 8x+3y=40     16x+6y=41       if we multiply the first equation by 2  we get

 

16x + 6y  = 80                but the second equation says that 16x + 6y = 41

 

Then   16x + 6y    has two different values and this is impossible.......so......the answer is "e"

 

 

 

cool cool cool

 Aug 26, 2016
 #2
avatar+130560 
0

9x + 3y + 4z = -94       5x−5y+2z=2       6x − 7y − 10z = 6 

 

Multiply the second equation by -2 and add it to the first

 

9x + 3y + 4z   = -94

-10x+10y-4z  =   -4

--------------------------

-x + 13y    =   - 98         (4)

 

Multiply the second equation by 5 and add it to the third

 

6x - 7y - 10z  = 6

25x -25y + 10z  = 10

_________________

 

31x - 32y  = 16    (5)

 

Multiply (4) by 31   and add to (5)

 

31x - 32y = 16

-31x + 403y = -3038

_________________

           371y  =  -3022      →  y  = -3022/371

 

And we can use (4) to find x     

 

-x + 13 (-3022/371) = -98

 

x = 98 + 13(-3022/371)   = -2928/371

 

And using the second equation to find z, we have

 

5(-2928/371) −5(-3022/371) +2z=2

 

2z = 2 - 5(-2928/371) + 5(-3022/371)

 

z =  [2 - 5(-2928/371) + 5(-3022/371)] / 2   = 136/371

 

So.....the solutions are   {x, y, z}  =  { -2928/371 ,   -3022/371 ,   136/371  }

 

 

 

 

cool cool cool

 Aug 26, 2016

2 Online Users

avatar