+0  
 
0
1490
9
avatar+101 

xy'+2y=x²-3
y'+y*tanx=1/cosx
xy'-(x+1)y=-(x²+1)e^x
y'+y/sqrt(1+x²)=1

y'+6y/(x+2)=1/(x+2)²

 Jan 1, 2017

Best Answer 

 #7
avatar
+10

Solve the linear equation x ( dy(x))/( dx) - (x + 1) y(x) = -e^x (x^2 + 1):
Rewrite the equation:
( dy(x))/( dx) + ((-x - 1) y(x))/x = -(e^x (x^2 + 1))/x
Let μ(x) = e^( integral(-x - 1)/x dx) = e^(-x)/x


Multiply both sides by μ(x):
(e^(-x) ( dy(x))/( dx))/x + ((e^(-x) (-x - 1)) y(x))/x^2 = -(x^2 + 1)/x^2
Substitute (e^(-x) (-x - 1))/x^2 = ( d)/( dx)(e^(-x)/x):
(e^(-x) ( dy(x))/( dx))/x + ( d)/( dx)(e^(-x)/x) y(x) = -(x^2 + 1)/x^2
Apply the reverse product rule g ( df)/( dx) + f ( dg)/( dx) = ( d)/( dx)(f g) to the left-hand side:


( d)/( dx)((e^(-x) y(x))/x) = -(x^2 + 1)/x^2
Integrate both sides with respect to x:
 integral( d)/( dx)((e^(-x) y(x))/x) dx = integral-(x^2 + 1)/x^2 dx


Evaluate the integrals:
(e^(-x) y(x))/x = -x + 1/x + c_1, where c_1 is an arbitrary constant.
Divide both sides by μ(x) = e^(-x)/x:
Answer: |y(x) = e^x x (-x + 1/x + C1)

 

Solve the linear equation (y(x))/sqrt(x^2 + 1) + ( dy(x))/( dx) = 1:
Let μ(x) = e^( integral1/sqrt(x^2 + 1) dx) = e^(sinh^(-1)(x)).


Multiply both sides by μ(x):
e^(sinh^(-1)(x)) ( dy(x))/( dx) + (e^(sinh^(-1)(x)) y(x))/sqrt(x^2 + 1) = e^(sinh^(-1)(x))


Substitute e^(sinh^(-1)(x))/sqrt(x^2 + 1) = ( d)/( dx)(e^(sinh^(-1)(x))):
e^(sinh^(-1)(x)) ( dy(x))/( dx) + ( d)/( dx)(e^(sinh^(-1)(x))) y(x) = e^(sinh^(-1)(x))


Apply the reverse product rule g ( df)/( dx) + f ( dg)/( dx) = ( d)/( dx)(f g) to the left-hand side:
( d)/( dx)(e^(sinh^(-1)(x)) y(x)) = e^(sinh^(-1)(x))


Integrate both sides with respect to x:
 integral( d)/( dx)(e^(sinh^(-1)(x)) y(x)) dx = integral e^(sinh^(-1)(x)) dx


Evaluate the integrals:
e^(sinh^(-1)(x)) y(x) = 1/2 (sinh^(-1)(x) + x (x + sqrt(x^2 + 1))) + c_1, where c_1 is an arbitrary constant.


Divide both sides by μ(x) = e^(sinh^(-1)(x)):
Answer: |y(x) = (1/2 (sinh^(-1)(x) + x (x + sqrt(x^2 + 1))) + C1)/e^(sinh^(-1)(x))

 Jan 2, 2017
 #1
avatar
+5

Get the answers by entering them into Wolfram/Alpha Computing Engine. If you need step by step solution, I will borrow my brother's computer and might be able to help you, since he is subscribed to it.

 Jan 1, 2017
 #2
avatar+101 
+5

thanks Guest!

I actually have the solutions, but I expect to find better ones here because I noticed many times that some solving ways are better than some others :) 

Majid  Jan 1, 2017
 #3
avatar+118609 
+10

Hi Majid,

I am not going to attempt your calculus but it is great to finally see you posting on the forum  :D

I always like looking at these answers too if anyone want to have a go. :)

 Jan 2, 2017
 #4
avatar+128475 
+10

y'+y* tanx=1/cosx

 

y' + y [tan x]  = sec x          multiply both sides by sec x

 

y'sec x  + y [  sec x tan x ]   =  sec^2 x

 

Let u  =  y sec x   →  du   =  y'sec x  + y*  sec x tan x

 

So

 

du  = sec^2 x     integrate both sides

 

∫ du   = ∫ sec^2 dx

 

u =  tan x + C1

 

y sec x   =  tan x + C1   

 

y [ 1/cos x ]   = sin x / cos x  + C1      multiply through by cos x

 

y =   sin x + C1 cos x

 

 

cool cool cool

 Jan 2, 2017
 #5
avatar+128475 
+10

xy'+2y=x²-3        multiply both sides by x

 

x^2y'+2xy=x^3-3x

 

Let u  =  x^2*y   →  du   =  x^2y'  + 2xy

 

So we have

 

du  = x^3-3x      integrate both sides

 

∫ du   = ∫ x^3 -3x dx

 

u  = x^4/4  - (3/2)x^2  + C1

 

x^2*y = x^4/4  - (3/2)x^2  + C1     divide through by   x^2

 

y  =  x^2/4  - (3/2)  +  C1 / x^2

 

 

 

cool cool cool

 Jan 2, 2017
 #6
avatar+128475 
+10

y'+6y/(x+2)=1/(x+2)²   multiply both sides by (x+ 2)^6

 

y' (x + 2)^6  +  6y(x + 2)^5  =  (x + 2)^4

 

Let u   = y (x + 2)^6    →  du =   y' (x + 2)^6  +  6y(x + 2)^5  

 

So we have

 

du   = (x + 2)^4    integrate both sides

 

∫ du   = ∫  (x + 2)^4 dx

 

u =  (x + 2)^5 / 5    +  C1

 

y (x + 2)^6  =  (x + 2)^5 / 5    +  C1        divide through by   ( x + 2)^6

 

y  =   1 / [5( x+ 2)]  +  C1 / ( x + 2)^6

 

y  =   1 / [5x + 10]  +  C1 / ( x + 2)^6

 

 

 

cool cool cool

 Jan 2, 2017
 #7
avatar
+10
Best Answer

Solve the linear equation x ( dy(x))/( dx) - (x + 1) y(x) = -e^x (x^2 + 1):
Rewrite the equation:
( dy(x))/( dx) + ((-x - 1) y(x))/x = -(e^x (x^2 + 1))/x
Let μ(x) = e^( integral(-x - 1)/x dx) = e^(-x)/x


Multiply both sides by μ(x):
(e^(-x) ( dy(x))/( dx))/x + ((e^(-x) (-x - 1)) y(x))/x^2 = -(x^2 + 1)/x^2
Substitute (e^(-x) (-x - 1))/x^2 = ( d)/( dx)(e^(-x)/x):
(e^(-x) ( dy(x))/( dx))/x + ( d)/( dx)(e^(-x)/x) y(x) = -(x^2 + 1)/x^2
Apply the reverse product rule g ( df)/( dx) + f ( dg)/( dx) = ( d)/( dx)(f g) to the left-hand side:


( d)/( dx)((e^(-x) y(x))/x) = -(x^2 + 1)/x^2
Integrate both sides with respect to x:
 integral( d)/( dx)((e^(-x) y(x))/x) dx = integral-(x^2 + 1)/x^2 dx


Evaluate the integrals:
(e^(-x) y(x))/x = -x + 1/x + c_1, where c_1 is an arbitrary constant.
Divide both sides by μ(x) = e^(-x)/x:
Answer: |y(x) = e^x x (-x + 1/x + C1)

 

Solve the linear equation (y(x))/sqrt(x^2 + 1) + ( dy(x))/( dx) = 1:
Let μ(x) = e^( integral1/sqrt(x^2 + 1) dx) = e^(sinh^(-1)(x)).


Multiply both sides by μ(x):
e^(sinh^(-1)(x)) ( dy(x))/( dx) + (e^(sinh^(-1)(x)) y(x))/sqrt(x^2 + 1) = e^(sinh^(-1)(x))


Substitute e^(sinh^(-1)(x))/sqrt(x^2 + 1) = ( d)/( dx)(e^(sinh^(-1)(x))):
e^(sinh^(-1)(x)) ( dy(x))/( dx) + ( d)/( dx)(e^(sinh^(-1)(x))) y(x) = e^(sinh^(-1)(x))


Apply the reverse product rule g ( df)/( dx) + f ( dg)/( dx) = ( d)/( dx)(f g) to the left-hand side:
( d)/( dx)(e^(sinh^(-1)(x)) y(x)) = e^(sinh^(-1)(x))


Integrate both sides with respect to x:
 integral( d)/( dx)(e^(sinh^(-1)(x)) y(x)) dx = integral e^(sinh^(-1)(x)) dx


Evaluate the integrals:
e^(sinh^(-1)(x)) y(x) = 1/2 (sinh^(-1)(x) + x (x + sqrt(x^2 + 1))) + c_1, where c_1 is an arbitrary constant.


Divide both sides by μ(x) = e^(sinh^(-1)(x)):
Answer: |y(x) = (1/2 (sinh^(-1)(x) + x (x + sqrt(x^2 + 1))) + C1)/e^(sinh^(-1)(x))

Guest Jan 2, 2017
 #8
avatar
+10

I think that it's intended that they are all solved using the so called Integrating Factor (IF) Method.

The standard form of the equation is taken to be

\(\displaystyle \frac{dy}{dx}+P(x)y = Q(x)\) ,

and the method of solution is to multiply throughout by the IF  \(\displaystyle e^{\int P(x)\,dx}\). That will put the LHS into the form of a perfect derivative.

 

For example, with the second one, \(P(x)=\tan(x) \text{ so the IF will be } \exp(\ln(\sec(x))=\sec(x)\).

That's what CPhill multiplied by. (I don't know whether he worked it out as above or whether it was by inspection).

 

For the first one, \(\displaystyle x\frac{dy}{dx} +2y=x^{2}-3\),

divide throughout by x to begin with to put the equation into its standard form, so we have

\(\displaystyle \frac{dy}{dx}+\frac{2}{x}y = x -\frac{3}{x}\) and the IF will be \(\displaystyle \exp(\int \frac{2}{x}\;dx)=\exp(2\ln(x))=\exp(\ln(x^{2}))=x^{2}\).

Multiply throughout by \(\displaystyle x^{2}\) and the equation becomes

\(\displaystyle x^{2}\frac{dy}{dx}+2xy=x^{3}-3x\)

which can be written as

\(\displaystyle \frac{d}{dx}(x^{2}y)=x^{3}-3x\),

and now just integrate wrt x.

 

The third one also begins with a division by x.

 

The fourth one requires a knowledge of hyperbolic functions. The IF will be \(\displaystyle e^{\;\sinh^{-1}x}\) and we have to integrate that on the RHS.

To do that, use the substitution \(\displaystyle u = \sinh^{-1}x\) so that \(\displaystyle x = \sinh(u)\) and then later write \(\displaystyle \cosh(u)=(e^{u}+e^{-u})/2\).

It's still messy after that (putting it back in terms of x).

 

Tiggsy

 Jan 2, 2017
 #9
avatar+128475 
0

Thanks, Tiggsy......!!!!!

 

 

cool cool cool

 Jan 2, 2017

1 Online Users

avatar