Solve for the variable x in terms of y and z, assuming y \neq \frac{1}{2}: xy + x = \frac{3x + 2y + z + y + 2z}{3}
Hello Guest!
xy+x=3x+2y+z+y+2z3 |⋅33xy+3x=3x+2y+z+y+2z |−3x3xy=2y+z+y+2z | ÷(3y)x=23+z3y+13+2z3y | add and reducex=zy+1
!