$\dfrac{2^2 \cdot 4^2 \cdot 8^2}{2^2 \cdot 2^4 \cdot 2^8}.$
We have that [\dfrac{2^2 \cdot 4^2 \cdot 8^2}{2^2 \cdot 2^4 \cdot 2^8} = \dfrac{2^{2+4+8}}{2^{2+4+8}} = \dfrac{2^{14}}{2^{14}} = \boxed{1}.]
simplify (2^2×4^2×8^2)/(2^2×2^4×2^8)
Numerator ==2^2 * (2^2)^2 * (2^3)^2 ==2^2 * 2^4 * 2^6 ==2^(2 + 4 + 6) ==2^12
Denominator==2^2 * 2^4 * 2^8 ==2^(2 + 4 + 8) ==2^14
Numerator / Denominator ==2^12 / 2^14==1 / 2^2==1 / 4