+0  
 
+1
730
1
avatar+885 

Solve for x:

\(3^2*9^4=27^x\)

 Apr 21, 2018

Best Answer 

 #1
avatar+4622 
+3

We break \(27^x\) into \((3^3)^x\)  , and  \(9^4\) into \((3^2)^4\) . Now, we have \(3^2*3^8=3^{3x}\) . Since the bases are equal, we have \(3x=2+8, 3x=10, x=\boxed{\frac{10}{3}}\)

 Apr 21, 2018
 #1
avatar+4622 
+3
Best Answer

We break \(27^x\) into \((3^3)^x\)  , and  \(9^4\) into \((3^2)^4\) . Now, we have \(3^2*3^8=3^{3x}\) . Since the bases are equal, we have \(3x=2+8, 3x=10, x=\boxed{\frac{10}{3}}\)

tertre Apr 21, 2018

2 Online Users

avatar