We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
231
1
avatar+866 

Solve for x:

\(3^2*9^4=27^x\)

 Apr 21, 2018

Best Answer 

 #1
avatar+4286 
+3

We break \(27^x\) into \((3^3)^x\)  , and  \(9^4\) into \((3^2)^4\) . Now, we have \(3^2*3^8=3^{3x}\) . Since the bases are equal, we have \(3x=2+8, 3x=10, x=\boxed{\frac{10}{3}}\)

.
 Apr 21, 2018
 #1
avatar+4286 
+3
Best Answer

We break \(27^x\) into \((3^3)^x\)  , and  \(9^4\) into \((3^2)^4\) . Now, we have \(3^2*3^8=3^{3x}\) . Since the bases are equal, we have \(3x=2+8, 3x=10, x=\boxed{\frac{10}{3}}\)

tertre Apr 21, 2018

10 Online Users

avatar
avatar
avatar