+0  
 
+1
160
1
avatar+836 

Solve for x:

\(3^2*9^4=27^x\)

 Apr 21, 2018

Best Answer 

 #1
avatar+3731 
+3

We break \(27^x\) into \((3^3)^x\)  , and  \(9^4\) into \((3^2)^4\) . Now, we have \(3^2*3^8=3^{3x}\) . Since the bases are equal, we have \(3x=2+8, 3x=10, x=\boxed{\frac{10}{3}}\)

.
 Apr 21, 2018
 #1
avatar+3731 
+3
Best Answer

We break \(27^x\) into \((3^3)^x\)  , and  \(9^4\) into \((3^2)^4\) . Now, we have \(3^2*3^8=3^{3x}\) . Since the bases are equal, we have \(3x=2+8, 3x=10, x=\boxed{\frac{10}{3}}\)

tertre Apr 21, 2018

10 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.