We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
119
2
avatar

How to solve these fractions? Thanks!

 Jun 7, 2019
 #1
avatar+8829 
+3

We can combine these fractions into one single fraction after getting a common denominator.

 

\(\mathbf{a.}\qquad\frac{4}{x}-\frac{6}{x}\quad=\quad\frac{4-6}{x}\quad=\quad-\frac{2}{x}\\~\\~\\ \mathbf{b.}\qquad\frac{x}{2}+\frac{2}{3}\quad=\quad\frac{3\,\cdot \,x}{3\,\cdot\,2}+\frac{2\,\cdot\,2}{3\,\cdot\,2}\quad=\quad\frac{3x}{6}+\frac46\quad=\quad\frac{3x+4}{6}\\~\\~\\ \mathbf{c.}\qquad2x\cdot\frac{3}{10}+\frac{x}{10}\quad=\quad\frac{2x\,\cdot\,3}{10}+\frac{x}{10}\quad=\quad\frac{6x}{10}+\frac{x}{10}\quad=\quad\frac{6x+x}{10}\quad=\quad\frac{7x}{10} \)

 

For this last one, we don't need to get a common denominator because we aren't adding fractions.

We just need to multiply them together and cancel common factors.

 

\(\mathbf{d.}\qquad\frac{3}{5x^2}\cdot\frac{4x^2}{6x}\quad=\quad\frac{3\,\cdot\,4x^2}{5x^2\,\cdot\,6x}\quad=\quad\frac{3\,\cdot\,2\,\cdot\,2\,\cdot\, x^2}{5\,\cdot\,x^2\,\cdot\,3\,\cdot\,2\cdot\,x}\quad=\quad \frac{{\color{gray}3}\,\cdot\,{\color{gray}2}\,\cdot\,2\,\cdot\, {\color{gray}x^2}}{5\,\cdot\,{\color{gray}x^2}\,\cdot\,{\color{gray}3}\,\cdot\,{\color{gray}2}\cdot\,x}\quad=\quad\frac{2}{5x}\)_

 Jun 7, 2019
 #2
avatar
+2

Thank you very much! :)

Guest Jun 7, 2019

20 Online Users

avatar
avatar
avatar