1) A frog started from the origin of the coordinate plane and made three jumps. Each time the frog jumped a distance of 5 units and landed at a point with integer coordinates. How many different possibilities of the final position of the frog are there?
2) Find the product of the real roots to the equation \(x^2+7x-5=5\sqrt{x^3-1}\).
3) A real number \(a\) is randomly chosen in the interval\(-20\leq a\leq 18\). What is the probability that all roots of the equation \(x^3+(2a+1)x^2+(4a-1)x+2=0\) are real?
4) Expanding \((x^2+3x+2)^2\) and simplifying (collecting like terms) gives \(x^4+6x^3+13x^2+12x+4\), which consists of 5 terms. If we expand \((a^2+20ab+18)^{2018}\) and simplify, how many terms will there be?
Source: International Mathematical Olympiad Preliminary Selection Contest - Hong Kong 2018.
I was in the contest, and I struggled in these problems. There are 20 questions, and only 3 hours to do them all, so it is around 9 minutes per question. It is so hard! :(
(P.S. I don't know the answers.)
Hi Max. Sorry, no LaTex!
2. Solve for x:
x^2 + 7 x - 5 = 5 sqrt(x^3 - 1)
x^2 + 7 x - 5 = 5 sqrt(x^3 - 1) is equivalent to 5 sqrt(x^3 - 1) = x^2 + 7 x - 5:
5 sqrt(x^3 - 1) = x^2 + 7 x - 5
Raise both sides to the power of two:
25 (x^3 - 1) = (x^2 + 7 x - 5)^2
Expand out terms of the left hand side:
25 x^3 - 25 = (x^2 + 7 x - 5)^2
Expand out terms of the right hand side:
25 x^3 - 25 = x^4 + 14 x^3 + 39 x^2 - 70 x + 25
Subtract x^4 + 14 x^3 + 39 x^2 - 70 x + 25 from both sides:
-x^4 + 11 x^3 - 39 x^2 + 70 x - 50 = 0
The left hand side factors into a product with three terms:
-(x^2 - 8 x + 10) (x^2 - 3 x + 5) = 0
Multiply both sides by -1:
(x^2 - 8 x + 10) (x^2 - 3 x + 5) = 0
Split into two equations:
x^2 - 8 x + 10 = 0 or x^2 - 3 x + 5 = 0
Subtract 10 from both sides:
x^2 - 8 x = -10 or x^2 - 3 x + 5 = 0
Add 16 to both sides:
x^2 - 8 x + 16 = 6 or x^2 - 3 x + 5 = 0
Write the left hand side as a square:
(x - 4)^2 = 6 or x^2 - 3 x + 5 = 0
Take the square root of both sides:
x - 4 = sqrt(6) or x - 4 = -sqrt(6) or x^2 - 3 x + 5 = 0
Add 4 to both sides:
x = 4 + sqrt(6) or x - 4 = -sqrt(6) or x^2 - 3 x + 5 = 0
Add 4 to both sides:
x = 4 + sqrt(6) or x = 4 - sqrt(6) or x^2 - 3 x + 5 = 0
Subtract 5 from both sides:
x = 4 + sqrt(6) or x = 4 - sqrt(6) or x^2 - 3 x = -5
Add 9/4 to both sides:
x = 4 + sqrt(6) or x = 4 - sqrt(6) or x^2 - 3 x + 9/4 = -11/4
Write the left hand side as a square:
x = 4 + sqrt(6) or x = 4 - sqrt(6) or (x - 3/2)^2 = -11/4
Take the square root of both sides:
x = 4 + sqrt(6) or x = 4 - sqrt(6) or x - 3/2 = (i sqrt(11))/2 or x - 3/2 = 1/2 (-i) sqrt(11)
Add 3/2 to both sides:
x = 4 + sqrt(6) or x = 4 - sqrt(6) or x = 3/2 + (i sqrt(11))/2 or x - 3/2 = -(i sqrt(11))/2
Add 3/2 to both sides:
x = 4 + sqrt(6) or x = 4 - sqrt(6) or x = 3/2 + (i sqrt(11))/2 or x = 3/2 - (i sqrt(11))/2
[4 + sqrt(6)] * [4 - sqrt(6)]= 10
[Courtesy of Mathematica 11 Home Edition]
1)
A frog started from the origin of the coordinate plane and made three jumps.
Each time the frog jumped a distance of 5 units and landed at a point with integer coordinates.
How many different possibilities of the final position of the frog are there?
Startposition ( 0, 0 ):
After 1. Jump, there are 12 different positions with a distance of 5 units.
1.) ( 5, 0 )
2.) ( 4, 3 )
3.) ( 3, 4 )
4.) ( 0, 5 )
5.) ( -3, 4 )
6.) ( -4, 3 )
7.) ( -5, 0 )
8.) ( -4, -3 )
9.) ( -3, -4 )
10.) ( 0, -5 )
11.) ( 3, -4 )
12.) ( 4, -3 )
There are \( 12^3\) = 1728 jumps. But 264 different possibilities of the final position.
1.) (15, 0)
2.) (14, 3)
3.) (13, 4)
4.) (10, 5)
5.) (7, 4)
6.) (6, 3)
7.) (5, 0)
8.) (6, -3)
9.) (7, -4)
10.) (10, -5)
11.) (13, -4)
12.) (14, -3)
13.) (13, 6)
14.) (12, 7)
15.) (9, 8)
16.) (6, 7)
17.) (5, 6)
18.) (4, 3)
19.) (6, -1)
20.) (9, -2)
21.) (12, -1)
22.) (13, 0)
23.) (11, 8)
24.) (8, 9)
25.) (5, 8)
26.) (4, 7)
27.) (3, 4)
28.) (4, 1)
29.) (8, -1)
30.) (11, 0)
31.) (12, 1)
32.) (5, 10)
33.) (2, 9)
34.) (1, 8)
35.) (0, 5)
36.) (1, 2)
37.) (2, 1)
38.) (8, 1)
39.) (9, 2)
40.) (-1, 8)
41.) (-2, 7)
42.) (-3, 4)
43.) (-2, 1)
44.) (-1, 0)
45.) (2, -1)
46.) (6, 1)
47.) (-3, 6)
48.) (-4, 3)
49.) (-3, 0)
50.) (-2, -1)
51.) (1, -2)
52.) (4, -1)
53.) (-5, 0)
54.) (-4, -3)
55.) (-3, -4)
56.) (0, -5)
57.) (3, -4)
58.) (4, -3)
59.) (-3, -6)
60.) (-2, -7)
61.) (1, -8)
62.) (4, -7)
63.) (5, -6)
64.) (-1, -8)
65.) (2, -9)
66.) (5, -8)
67.) (6, -7)
68.) (5, -10)
69.) (8, -9)
70.) (9, -8)
71.) (11, -8)
72.) (12, -7)
73.) (13, -6)
74.) (12, 9)
75.) (11, 10)
76.) (8, 11)
77.) (4, 9)
78.) (3, 6)
79.) (5, 2)
80.) (11, 2)
81.) (12, 3)
82.) (10, 11)
83.) (7, 12)
84.) (4, 11)
85.) (3, 10)
86.) (2, 7)
87.) (7, 2)
88.) (10, 3)
89.) (11, 4)
90.) (4, 13)
91.) (1, 12)
92.) (0, 11)
93.) (1, 4)
94.) (8, 5)
95.) (-2, 11)
96.) (-3, 10)
97.) (-4, 7)
98.) (-2, 3)
99.) (5, 4)
100.) (-4, 9)
101.) (-5, 6)
102.) (-3, 2)
103.) (0, 1)
104.) (3, 2)
105.) (-6, 3)
106.) (-4, -1)
107.) (-1, -2)
108.) (3, 0)
109.) (-2, -5)
110.) (1, -6)
111.) (4, -5)
112.) (5, -4)
113.) (7, -6)
114.) (8, -5)
115.) (11, -4)
116.) (12, -3)
117.) (9, 12)
118.) (6, 13)
119.) (3, 12)
120.) (2, 11)
121.) (2, 5)
122.) (9, 4)
123.) (3, 14)
124.) (0, 13)
125.) (-1, 12)
126.) (-2, 9)
127.) (-1, 6)
128.) (6, 5)
129.) (7, 6)
130.) (-3, 12)
131.) (-4, 11)
132.) (-5, 8)
133.) (-4, 5)
134.) (0, 3)
135.) (4, 5)
136.) (-5, 10)
137.) (-6, 7)
138.) (-5, 4)
139.) (-1, 2)
140.) (2, 3)
141.) (-7, 4)
142.) (-6, 1)
143.) (1, 0)
144.) (-5, -2)
145.) (-1, -4)
146.) (2, -3)
147.) (3, -2)
148.) (3, -6)
149.) (6, -5)
150.) (9, -4)
151.) (10, -3)
152.) (11, -2)
153.) (0, 15)
154.) (-3, 14)
155.) (-4, 13)
156.) (-6, 13)
157.) (-7, 12)
158.) (-8, 9)
159.) (-7, 6)
160.) (-6, 5)
161.) (1, 6)
162.) (-8, 11)
163.) (-9, 8)
164.) (-8, 5)
165.) (-1, 4)
166.) (-10, 5)
167.) (-9, 2)
168.) (-8, 1)
169.) (-8, -1)
170.) (-7, -2)
171.) (0, -1)
172.) (-6, -3)
173.) (0, -3)
174.) (7, -2)
175.) (-9, 12)
176.) (-10, 11)
177.) (-11, 8)
178.) (-9, 4)
179.) (-2, 5)
180.) (-11, 10)
181.) (-12, 7)
182.) (-11, 4)
183.) (-10, 3)
184.) (-7, 2)
185.) (-13, 4)
186.) (-12, 1)
187.) (-11, 0)
188.) (-4, 1)
189.) (-11, -2)
190.) (-10, -3)
191.) (-7, -4)
192.) (-3, -2)
193.) (-9, -4)
194.) (-6, -5)
195.) (-2, -3)
196.) (1, -4)
197.) (5, -2)
198.) (-12, 9)
199.) (-13, 6)
200.) (-12, 3)
201.) (-11, 2)
202.) (-5, 2)
203.) (-14, 3)
204.) (-13, 0)
205.) (-12, -1)
206.) (-9, -2)
207.) (-6, -1)
208.) (-12, -3)
209.) (-11, -4)
210.) (-8, -5)
211.) (-5, -4)
212.) (-10, -5)
213.) (-7, -6)
214.) (-4, -5)
215.) (-4, -7)
216.) (-1, -6)
217.) (2, -5)
218.) (-15, 0)
219.) (-14, -3)
220.) (-13, -4)
221.) (-13, -6)
222.) (-12, -7)
223.) (-9, -8)
224.) (-6, -7)
225.) (-5, -6)
226.) (-11, -8)
227.) (-8, -9)
228.) (-5, -8)
229.) (-5, -10)
230.) (-2, -9)
231.) (2, -7)
232.) (-12, -9)
233.) (-11, -10)
234.) (-8, -11)
235.) (-4, -9)
236.) (-10, -11)
237.) (-7, -12)
238.) (-4, -11)
239.) (-3, -10)
240.) (-4, -13)
241.) (-1, -12)
242.) (0, -11)
243.) (2, -11)
244.) (3, -10)
245.) (4, -9)
246.) (-9, -12)
247.) (-6, -13)
248.) (-3, -12)
249.) (-2, -11)
250.) (-3, -14)
251.) (0, -13)
252.) (1, -12)
253.) (3, -12)
254.) (4, -11)
255.) (0, -15)
256.) (3, -14)
257.) (4, -13)
258.) (6, -13)
259.) (7, -12)
260.) (8, -11)
261.) (9, -12)
262.) (10, -11)
263.) (11, -10)
264.) (12, -9)
4.
(a^2 + 2ab + 18)^2018
For all exponents n, the number of terms =1/2(n + 2 - 1)(n + 3 - 1). Example: 5th power:
1/2(5 + 2 -1)(5 + 3 - 1) = 1/2 x 6 x 7 = 21 terms. Therefore, to the power of 2018:
1/2 (2018 + 2 - 1)(2018 + 3 - 1) = 1/2 x 2019 x 2020 =2,039,190 number of terms.
3.
x^3+(2a+1)x^2+(4a-1)x+2=0
x = -2, ALL values of "a" are solutions.
x = - 1/2, a = 7/4
x = 1/2, a = - 3/4
Since ALL the solutions are "real", the probability is 100%!!.
I think the question is asking all roots(x) are real, not a.
Therefore, shouldn't we solve the general root first, then find the probability that all x are real?
I mean:
\(x^3+(2a+1)x^2+(4a-1)x+2 = 0\\ x = -2 , \dfrac{\sqrt{4a^2-4a-3}-2a+1}{2}, \dfrac{-\sqrt{4a^2-4a-3}-2a+1}{2}\)
So the question becomes probability that \(\sqrt{4a^2-4a-3}\) is real.
1)
A frog started from the origin of the coordinate plane and made three jumps.
Each time the frog jumped a distance of 5 units and landed at a point with integer coordinates.
How many different possibilities of the final position of the frog are there?
All 264 different possibilities of the final position of the frog:
\scalebox{0.5}{% scale
\begin{tikzpicture}
\draw[thick] (-15,-15) grid (15,15);
% Axes
\foreach \x in {-15,...,-1,0,1,2,...,15} {%
\draw (\x, -.1) -- (\x, 0) node[below left=2pt] {$\scriptstyle\x$};
}
\foreach \y in {-15,...,-1,1,2,...,15} {%
\draw (-.1,\y) -- (0,\y) node[below left=2pt] {$\scriptstyle\y$};
};
\foreach \x/\y in {5/0,4/3,3/4,0/5,-5/0,-4/3,-3/4,4/-3,3/-4,0/-5/,-4/-3/,-3/-4} %{\x \y,}
{
\foreach \v/\w in {5/0,4/3,3/4,0/5,-5/0,-4/3,-3/4,4/-3,3/-4,0/-5/,-4/-3/,-3/-4} %{\v \w,}
{
\foreach \r/\s in {5/0,4/3,3/4,0/5,-5/0,-4/3,-3/4,4/-3,3/-4,0/-5/,-4/-3/,-3/-4} %{\r \s,}
{
\node[draw,circle,inner sep=2pt,fill] at (\x+\v+\r,\y+\w+\s) {};
}
}
}
\end{tikzpicture}
}