+0  
 
0
651
6
avatar+11912 

Factorise:

 

v) (l+m)^2 - (l-m)^2

 

we need to expand this to solve but idk somehow I'm getting a wrong answer!

 Jan 18, 2015

Best Answer 

 #1
avatar+118677 
+15

Your wish is my command Rosala  :)

(l+m)^2 - (l-m)^2         Yuk   Mmm

$$\\(l+m)^2 - (l-m)^2\\
l^2+m^2+2lm-[l^2+m^2-2lm]\\
l^2+m^2+2lm-l^2-m^2+2lm\\
2\;lm+2\;lm\\
4\;lm$$

This is fully simplified - there is nothing to factorise  

 Jan 18, 2015
 #1
avatar+118677 
+15
Best Answer

Your wish is my command Rosala  :)

(l+m)^2 - (l-m)^2         Yuk   Mmm

$$\\(l+m)^2 - (l-m)^2\\
l^2+m^2+2lm-[l^2+m^2-2lm]\\
l^2+m^2+2lm-l^2-m^2+2lm\\
2\;lm+2\;lm\\
4\;lm$$

This is fully simplified - there is nothing to factorise  

Melody Jan 18, 2015
 #2
avatar+11912 
+10

Thank you so much Melody! I got my problem!thanks!

 Jan 18, 2015
 #3
avatar+118677 
+10

That is really good - that is what we are here for  :)

 Jan 18, 2015
 #4
avatar+11912 
+5

Yeah! I know! Thanks!

 Jan 18, 2015
 #5
avatar
+10

(l+m)^2-(l-m)^2=(l+m+l-m)(l+m-l+m)=2l*2m=4ml

a^2-b^2=(a+b)(a-b)

 Jan 18, 2015
 #6
avatar+129852 
+5

Here's another way to do this one, rosala

(l+m)^2 - (l-m)^2

[ (l + m) - (l - m) ] [ (l + m) + (l - m)] =

[2m] [2l ]=

4ml

 

 Jan 19, 2015

3 Online Users

avatar