+0  
 
-1
67
4
avatar

What non-zero integer must be placed in the square so that the simplified product of these two binomials is a binomial: $(6x+4)(15x-\Box )$?

 Mar 30, 2020
 #1
avatar+41 
+1

Hey CPhill, could you look at a problem that is 15th from the top and says that the person has been stuck for an hour. Thank you!

 Mar 30, 2020
 #4
avatar+41 
0

Now it's actually 16th from the top.

MathsAreFun  Mar 30, 2020
 #2
avatar+41 
+1

After you're done with this problem of course.

 Mar 30, 2020
 #3
avatar+111321 
+1

(6x + 4) * (15x  - Square )

 

We  need  to  have a "square" that will  "cancel"  the  resulting  "x"  term  

 

This  can  be  done  by making the 'square"  =  -10

 

Proof

 

(6x  + 4)  (15x  - 10)  = 

 

90x^2  +  60 x - 60 x  -  40  =

 

90x^2  - 40   =   a binomial

 

 

cool cool cool

 Mar 30, 2020

18 Online Users

avatar
avatar
avatar