We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
763
7
avatar+676 

Anyone think they can tackle this question?

Having a little bit of trouble.

 May 2, 2017
edited by TakahiroMaeda  May 2, 2017
 #1
avatar+8720 
+4

          

 May 2, 2017
 #3
avatar+103676 
+1

I love your illustrated thought process Hectictar :)

Melody  May 2, 2017
 #4
avatar+8720 
+1

Haha thank you Melody!

I obviously didn't make this though! Just thought I'd clarify that laughlaugh

hectictar  May 2, 2017
 #2
avatar+103676 
+2

I used this site:

https://goo.gl/Qem530

and got this answer:

I haven't tried to make sense of it yet though.

 

 May 2, 2017
 #5
avatar+23048 
+4

Something Mathematical to do.

\(\begin{array}{llcl} \int \limits_{x=0}^{\infty} { \frac{1}{ (x+\sqrt{1+x^2})^2 } \ dx}\\\\ & \text{substitute:}\\ & \boxed{~ x=\tan(z) \\ dx = ( 1+\tan^2(z))\ dz \\ ~}\\ & \text{new limits:}\\ & \boxed{~ z=\arctan(0) \Rightarrow z = 0 \\ z=\arctan(\infty) \Rightarrow z = \frac{\pi}{2} \\\\ ~}\\ =\int \limits_{z=0}^{\frac{\pi}{2}} { \frac{1+\tan^2(z)}{ \Big(\tan(z)+\sqrt{1+\tan^2(z)}\Big)^2 } \ dz} \\ & \boxed{~ 1+\tan^2(z) = \frac{1}{\cos^2(z)} \\ ~}\\ =\int \limits_{z=0}^{\frac{\pi}{2}} { \frac{1}{\cos^2(z)}\cdot \left( \frac{1}{\frac{1}{\cos^2(z)}+ \tan^2(z)+2\cdot \frac{\sin(z)}{\cos^2(z)} } \right) \ dz} \\ = \int \limits_{z=0}^{\frac{\pi}{2}} { \frac{1}{1+2\cdot \sin(z) + \sin^2(z) } \ dz} \\ = \int \limits_{z=0}^{\frac{\pi}{2}} { \frac{1}{ \Big(1+\sin(z)\Big)^2 } \ dz} \\ & \text{substitute:}\\ & \boxed{~ t=\tan(\frac{z}{2}) \\ dt = \frac12 \cdot \left( 1+\tan^2(\frac{z}{2}) \right)\ dz\\ =\frac12 \cdot (1+t^2)\ dz \\ ~}\\ & \text{new limits:}\\ & \boxed{~ t=\tan(\frac{0}{2}) \Rightarrow t = 0 \\ t=\tan(\frac{ \frac{\pi}{2}}{2}) \Rightarrow t = 1 \\\\ ~}\\ = \int \limits_{t=0}^{1} \frac{2\ dt}{1+t^2} \cdot \left( \frac{1}{ \left(1+ \sin(z)\right)^2 } \right) \\ & \boxed{~ \sin(z) = \frac{2t}{1+t^2} \\ ~}\\ = \int \limits_{t=0}^{1} \frac{2\ dt}{1+t^2} \cdot \left( \frac{1}{ \left(1+ \frac{2t}{1+t^2}\right)^2 } \right) \\ = 2\cdot \int \limits_{t=0}^{1} \frac{1+t^2}{1+4t+6t^2+4t^3+t^4} \ dt\\ = 2\cdot \int \limits_{t=0}^{1} \frac{1+t^2}{(1+t)^4} \ dt\\ \end{array}\)

 

\(\begin{array}{llcl} & \text{Partial fraction decomposition:}\\ & \boxed{~ \begin{array}{lcll} & \frac{1+t^2}{(1+t)^4} &=& \frac{A}{1+t} + \frac{B}{(1+t)^2} + \frac{C}{(1+t)^3} + \frac{D}{(1+t)^4} \\\\ & 1+t^2 &=& A\cdot (1+t)^3 +B\cdot (1+t)^2 +C\cdot (1+t) +D \\ (1)\quad t=-1 : & \Rightarrow 2 &=& D \\ (2)\quad t= 0 : & \Rightarrow -1 &=& A+B+C \\ (3)\quad t= 1 : & \Rightarrow 0 &=& 8A+4B+2C \quad | \quad : 2 \\ & 0 &=& 4A+2B+C \\ (4)\quad t= -2 : & \Rightarrow 3 &=& -A+B-C \\\\ (2)+(4) : & -1+3 &=& 2 B \qquad \Rightarrow B =1 \\ (3)+(4) : & 0+3 &=& 3A + 3B \quad | \quad : 3 \\ & 1 &=& A + B \quad | \quad B=1 \\ & 1 &=& A + 1 \qquad \Rightarrow A =0 \\ (2): & C &=& -1-A-B \\ & &=& -1-0-1 \qquad \Rightarrow C =-2 \\ \end{array} ~}\\ \end{array}\)

 

\(\begin{array}{llcl} = 2 \int \limits_{t=0}^{1} \left( \frac{1}{(1+t)^2} -2\cdot \frac{1}{(1+t)^3} +2\cdot \frac{1}{(1+t)^4 } \right) \ dt\\ = 2 \int \limits_{t=0}^{1} \frac{1}{(1+t)^2}\ dt -4 \int \limits_{t=0}^{1} \frac{1}{(1+t)^3}\ dt +4 \int \limits_{t=0}^{1} \frac{1}{(1+t)^4}\ dt \\ = 2 \left[ -\frac{1}{1+t} \right]_{t=0}^{1} -\frac{4}{2} \left[ -\frac{1}{(1+t)^2} \right]_{t=0}^{1} +\frac{4}{3} \left[ -\frac{1}{(1+t)^3} \right]_{t=0}^{1} \\ = 2 \left[ -\frac{1}{2} -(-1) \right] -\frac{4}{2} \left[ -\frac{1}{4}-(-1) \right] +\frac{4}{3} \left[-\frac{1}{8}-(-1) \right] \\ = 2 \left[ -\frac{1}{2} +1 \right] -2 \left[ -\frac{1}{4}+1 \right] +\frac{4}{3} \left[-\frac{1}{8}+1 \right] \\ = 2 \cdot \frac12 -2\cdot \frac34 +\frac43 \cdot \frac78 \\ = 1 - \frac32+ \frac76 \\ = \frac66 - \frac96 +\frac76 \\ = \frac{13}{6} - \frac96 \\ = \frac46 \\ = \frac23 \\ \end{array}\)

 

\(\begin{array}{llcl} \int \limits_{x=0}^{\infty} { \frac{1}{ (x+\sqrt{1+x^2})^2 } \ dx} = \frac23 \end{array}\)

 

laugh

 May 2, 2017
 #6
avatar+103676 
+2

Thanks Heureka,

I was wondering how this would be done.  

I did think of substituting x=tan(z) but I didn't get very far with it.   

Now I shall take a good look at your answer :))

 May 2, 2017
 #7
avatar+23048 
+2

Thanks Melody

 

laugh

heureka  May 3, 2017

37 Online Users

avatar
avatar
avatar
avatar