We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
99
1
avatar+15 

Point C(3.6, -0.4) divides in the ratio 3 : 2. If the coordinates of A are (-6, 5), the coordinates of point B are . 
A (5,-4)
B (5,-2)
C (10,-4)
D (10,-2)

 

If point D divides in the ratio 4 : 5, the coordinates of point D are .
A (62/9,-4)
B (58/9,-4)

 May 10, 2019
edited by AceOfMath  May 10, 2019
 #1
avatar+103148 
+2

Point C(3.6, -0.4) divides in the ratio 3 : 2. If the coordinates of A are (-6, 5), the coordinates of point B are . 

 

I'm assuming that  C divides  AB  in the ratio of  3 : 2

 

We have 5 equalline segments on AB    and   C are 3 of these

 

We can find the x coordinate of B, thusly :

 

[  -6 + (3/5) ( x coordinate of B -   - 6 ] =  3.6       add 6 to both sides

 

(3/5)(x coordinate of B  + 6 )  =  9.6      multiply both side by (5/3)

 

x coordinate of B + 6  =  16   subtract  6 form both sides

 

x coordinate of B  = 10

 

Similarly, we can find the y coordinate of B thusly.....

 

[ 5 + (3/5)( y coordinate of B - 5)  =  -0.4        subtract 5 from both sides

 

(3/5) (y coordinate of B - 5)  = -5.4       multiply both sides by 5/3

 

y coordinate of B - 5  = -9       add 5 to both sides

 

y coordinate of B  =  -4

 

So....B  =  ( 10 , - 4)   ⇒  "C"

 

See the graph, here : https://www.desmos.com/calculator/hfo8kkx0lp

 

 

cool  cool cool

 May 10, 2019

15 Online Users

avatar
avatar