+0  
 
0
920
1
avatar

$${{\sqrt{{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}}}}^{\,{\mathtt{2}}} = {\left({\mathtt{4}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{2}}}}\right)}^{{\mathtt{2}}} \Rightarrow {\mathtt{x}} = {\mathtt{8}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{2}}}}{\mathtt{\,-\,}}{\mathtt{13}}$$

Is it possible to simplfy more the result?

 Oct 7, 2014

Best Answer 

 #1
avatar+130511 
+5

So, squaring both sides, we have

x + 1  = 16 - 8√(2x -2) + 2x - 2    simplify

x+ 1 = 14 + 2x - 8√(2x -2)

- x - 13 = -8√(2x -2)    multiply through by -1

x + 13  = 8√(2x -2)      square both sides

(x +13)^2 = 64(2x -2)    expand

x^2 + 26x + 169 = 128x - 128       rearrange

x^2 - 102x - 297 = 0    factor

(x -3) (x - 99) = 0

So x = 3  or x = 99

Both answers  will solve your given situation......however..if the original problem was:

√(x + 1) = 4 - √(2x - 2)     (as I suspect it was)

Then only x = 3 actually "works"

 

 Oct 7, 2014
 #1
avatar+130511 
+5
Best Answer

So, squaring both sides, we have

x + 1  = 16 - 8√(2x -2) + 2x - 2    simplify

x+ 1 = 14 + 2x - 8√(2x -2)

- x - 13 = -8√(2x -2)    multiply through by -1

x + 13  = 8√(2x -2)      square both sides

(x +13)^2 = 64(2x -2)    expand

x^2 + 26x + 169 = 128x - 128       rearrange

x^2 - 102x - 297 = 0    factor

(x -3) (x - 99) = 0

So x = 3  or x = 99

Both answers  will solve your given situation......however..if the original problem was:

√(x + 1) = 4 - √(2x - 2)     (as I suspect it was)

Then only x = 3 actually "works"

 

CPhill Oct 7, 2014

0 Online Users