+0  
 
0
1057
1
avatar

\sqrt{(x-1)^2+(y-2)^2}+\sqrt{(x-2)^2+(y-2)^2}=4

 Jun 10, 2016
 #1
avatar+1904 
0

Since it was not specifically specified, I will solve for x first and then solve for y second.

 

Solve for x.

 

\(\sqrt{(x-1)^2+(y-2)^2}+\sqrt{(x-2)^2+(y-2)^2}=4\)

 

\(2\sqrt{(x-1)^2+(y-2)^2}=4\)

 

\((2\sqrt{(x-1)^2+(y-2)^2})^2=4^2\)

 

\(4((x-1)^2+(y-2)^2)=16\)

 

\(\frac{4((x-1)^2+(y-2)^2)}{4}=\frac{16}{4}\)

 

\((x-1)^2+(y-2)^2=4\)

 

\((x-1)^2+(y-2)^2-(y-2)^2=4-(y-2)^2\)

 

\((x-1)^2=4-(y-2)^2\)

 

\(\sqrt{(x-1)^2}=±\sqrt{4-(y-2)^2}\)

 

\(x-1=±\sqrt{4-(y-2)^2}\)

 

\(x-1=±\sqrt{4-(y^2-4y+4)}\)

 

\(x-1=±\sqrt{4-y^2+4y-4}\)

 

\(x-1=±\sqrt{-y^2+4y}\)

 

\(x-1=±\sqrt{y(-y+4)}\)

 

\(x-1=±\sqrt{y(4-y)}\)

 

\(x-1+1=±\sqrt{y(4-y)}+1\)

 

\(x-=±\sqrt{y(4-y)}+1\)

 

\(x=\sqrt{y(4-y)}+1,\) \(x=-\sqrt{y(4-y)}+1\)

 

Solve for y

 

\(\sqrt{(x-1)^2+(y-2)^2}+\sqrt{(x-2)^2+(y-2)^2}=4\)

 

\(2\sqrt{(x-1)^2+(y-2)^2}=4\)

 

\((2\sqrt{(x-1)^2+(y-2)^2})^2=4^2\)

 

\(4((x-1)^2+(y-2)^2)=16\)

 

\(\frac{4((x-1)^2+(y-2)^2)}{4}=\frac{16}{4}\)

 

\((x-1)^2+(y-2)^2=4\)

 

\((x-1)^2+(y-2)^2-(x-1)^2=4-(x-1)^2\)

 

\((y-2)^2=4-(x-1)^2\)

 

\(\sqrt{(y-2)^2}=±\sqrt{4-(x-1)^2}\)

 

\(y-2=±\sqrt{4-(x-1)^2}\)

 

\(y-2=±\sqrt{4-(x^2-2x+1)}\)

 

\(y-2=±\sqrt{4-x^2+2x-1}\)

 

\(y-2=±\sqrt{3-x^2+2x}\)

 

\(y-2=±\sqrt{-x^2+2x+3}\)

 

\(y-2=±\sqrt{(-x+3)(x+1)}\)

 

\(y-2+2=±\sqrt{(-x+3)(x+1)}+2\)

 

\(y=±\sqrt{(-x+3)(x+1)}+2\)

 

\(y=\sqrt{(-x+3)(x+1)}+2,\) \(y=-\sqrt{(-x+3)(x+1)}+2\)

 Jun 10, 2016

0 Online Users