(sqrt3(3)*sqrt(10))^4
$${\left({\sqrt[{{\mathtt{3}}}]{{\mathtt{3}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{10}}}}\right)}^{{\mathtt{4}}}$$
= $${\left({{\mathtt{3}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)}\right)}^{{\mathtt{4}}}$$
= $${{\mathtt{3}}}^{\left({\frac{{\mathtt{4}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{\left({\frac{{\mathtt{4}}}{{\mathtt{2}}}}\right)}$$
= $${\left({{\mathtt{3}}}^{\left({\mathtt{4}}\right)}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{{\mathtt{2}}}$$
= $${{\mathtt{81}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{\mathtt{100}}$$
= $${\mathtt{100}}{\mathtt{\,\times\,}}{\sqrt[{{\mathtt{{\mathtt{3}}}}}]{{\mathtt{81}}}}$$
(sqrt3(3)*sqrt(10))^4
$${\left({\sqrt[{{\mathtt{3}}}]{{\mathtt{3}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{10}}}}\right)}^{{\mathtt{4}}}$$
= $${\left({{\mathtt{3}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)}\right)}^{{\mathtt{4}}}$$
= $${{\mathtt{3}}}^{\left({\frac{{\mathtt{4}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{\left({\frac{{\mathtt{4}}}{{\mathtt{2}}}}\right)}$$
= $${\left({{\mathtt{3}}}^{\left({\mathtt{4}}\right)}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{{\mathtt{2}}}$$
= $${{\mathtt{81}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{\mathtt{100}}$$
= $${\mathtt{100}}{\mathtt{\,\times\,}}{\sqrt[{{\mathtt{{\mathtt{3}}}}}]{{\mathtt{81}}}}$$