We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
217
2
avatar+814 

When the expression \(3x^2-24x+55\) is written in the form \(a(x+d)^2+e\), where a,d , and e are constants, then what is the sum a+d+e?

 Aug 27, 2018

Best Answer 

 #1
avatar+7612 
+3

3x2 - 24x + 55

                                                      Factor  3  out of the first two terms.

   =   3(x2 - 8x) + 55

                                                      Add  16  and subtract  16  inside the parenthesees.

   =   3(x2 - 8x + 16 - 16) + 55

                                                      Factor  x2 - 8x + 16  as a perfect square trinomial.

   =   3( (x - 4)2 - 16) + 55

                                                      Distribute the  3  to the terms in parenthesees.

   =   3(x - 4)2 - 48 + 55

                                                      Combine  -48  and  55  to get  7 .

   =   3(x - 4)2 + 7

 

   =   a(x + d)2 + e

 

So...

 

a + d + e   =   3 + -4 + 7   =   6

 Aug 27, 2018
 #1
avatar+7612 
+3
Best Answer

3x2 - 24x + 55

                                                      Factor  3  out of the first two terms.

   =   3(x2 - 8x) + 55

                                                      Add  16  and subtract  16  inside the parenthesees.

   =   3(x2 - 8x + 16 - 16) + 55

                                                      Factor  x2 - 8x + 16  as a perfect square trinomial.

   =   3( (x - 4)2 - 16) + 55

                                                      Distribute the  3  to the terms in parenthesees.

   =   3(x - 4)2 - 48 + 55

                                                      Combine  -48  and  55  to get  7 .

   =   3(x - 4)2 + 7

 

   =   a(x + d)2 + e

 

So...

 

a + d + e   =   3 + -4 + 7   =   6

hectictar Aug 27, 2018
 #2
avatar+814 
+4

Correct! That's how you do it!

mathtoo  Aug 27, 2018

7 Online Users