$$\\\sqrt3tan^2x=tanx\\
\sqrt3tan^2x-tanx=0\\
tanx(\sqrt3tanx-1)=0\\
tanx=0 \quad or \quad \sqrt3tanx-1=0\\
tanx=0 \quad or \quad tanx=\frac{1}{\sqrt3}\\
-180^0,\;\;0^0,\;\;180^0,\quad or \quad -150^0,\;\;30^0\\
$so all the solutions are$\\
x=-180^0,\;\;-150^0,\;\;0^0,\;\;30^0,\;\;180^0$$
i see you seven people online. I see you and I'm judging you for not answering this question. But seriously please help me.
$$\\\sqrt3tan^2x=tanx\\
\sqrt3tan^2x-tanx=0\\
tanx(\sqrt3tanx-1)=0\\
tanx=0 \quad or \quad \sqrt3tanx-1=0\\
tanx=0 \quad or \quad tanx=\frac{1}{\sqrt3}\\
-180^0,\;\;0^0,\;\;180^0,\quad or \quad -150^0,\;\;30^0\\
$so all the solutions are$\\
x=-180^0,\;\;-150^0,\;\;0^0,\;\;30^0,\;\;180^0$$