+0  
 
0
34
2
avatar+760 

In the diagram, ABCD is a square.  Find sin PAQ.

 

 Feb 6, 2024
 #1
avatar
+1

Let's first find the side lengths of PAQ with the given information:

The square's side length is 4 units

 

Side AQ= 1^2+4^2= 17 so    AQ= sqrt17

Side PQ= 2^2+3^2=13 so    PQ= sqrt13

Side AP= 2^2+4^2=20 so     AP= 2sqrt5

 

Now let's use SOHCAHTOA:

We're going to do the opposite over hypotenuse, depending on which angle you are using, that should give you your answer .

 Feb 6, 2024
 #2
avatar+129895 
+1

Using the Law of Cosines

 

PQ^2  = PA^2 + AQ^2  - 2(PA*AQ) cos (PAQ)

 

13  =  20  + 17  - 2 (sqrt (20) * sqrt (17))cos(PAQ)

 

[13 - 20 - 17 ] / [ -2 sqrt (340) ]  =  cos (PAQ)  = 6/sqrt (85)

 

sin PAQ  = sqrt [ 1  - (6/sqrt85)^2 ] / sqrt (85) = sqrt [ 1 -36/85 ] / sqrt (85)  = sqrt [49 / 85 ] / sqrt [85] =

 

7 / 85

 

cool cool cool

 Feb 7, 2024

2 Online Users