+0

# Stuck on this Functions Problem

0
145
2
+278

Let \(f(x) = x^2 + 4x + 5\) for \(x \le -2.\) Find \(f^{-1}(x).\)

Feb 20, 2020

#1
+111433
+1

This one is a little tricky, DragonLord  !!!

The goal is to get x by itself and then "swap" x  and y

We can write

y  = x^2  + 4x  +  5      subtract  5  from both sides

y - 5 =  x^2  + 4x         complete  the  square  on x

y  -5  + 4  =  x^2  + 4x  +  4    factor the right side.....simplify  the left

y - 1  = (x + 2)^2      take both roots

±√[y - 1 ]  = x + 2     subtract 2 from  both sides

x = ±√[y -1 ] - 2   "swap"  x and  y

y  = ±√ [x -1] - 2       and we need to take the negative value  [I'll explain this in a second]

y = - √ [x -1]   -2    this is the inverse

However.....we have a resticted domain

To find  out what the  new  domain is we need to  solve  this :

(-2)^2  + 4(-2)  +  5  =

4  - 8  + 5

-4 + 5

1

This means that the  new  domain is   x ≥  1

See the graph here  :  https://www.desmos.com/calculator/xeind7czif

Here's why  we need  the   "-"  value on the root  function of the  inverse

Note  that  the  point   (-4, 5)  i on the origimal graph

The inverse  "switches"  these coordinates...so....the  point  ( 5, -4)  must  be  on the inverse

See the graph again to confirm this  : https://www.desmos.com/calculator/kt9chuswm0

Feb 20, 2020
edited by CPhill  Feb 20, 2020
edited by CPhill  Feb 21, 2020
#2
+278
+1

Very precise strategy to find the inverse. Thank you for your help <3

Feb 21, 2020