+0  
 
0
170
1
avatar

If f(x) = (x-3)/(x-4), then for what value of x is f^-1(x) undefined?

Guest Jan 25, 2018
 #1
avatar+7339 
+2

f(x)  =  (x - 3)/(x - 4)

                                     First let's find  f-1(x) . Instead of  f(x) , write  y .

y   =   (x - 3)/(x - 4)

                                     Now solve for  x . Multiply both sides of the equation by  (x - 4) .

y(x - 4)   =   x - 3

 

xy - 4y   =   x - 3

                                    Add  4y  to both sides and subtract  x  from both sides.

xy - x   =   4y - 3

                                    Factor  x  out of the terms on the left side.

x(y - 1)   =   4y - 3

                                    Divide both sides by  (y - 1) .

x   =   (4y - 3)/(y - 1)

                                    So...

f-1(x)  =  (4x - 3)/(x - 1)

 

And...

 

(4x - 3)/(x - 1)  is undefined when  x - 1  =  0

 

f-1(x)  is undefined when  x = 1

hectictar  Jan 25, 2018

2 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.