+0  
 
0
69
3
avatar+272 

 

 

3. What is the focus of the parabola?

y=−14x2−x+3

Enter your answer in the boxes.

(__,__)

 

4. The equation of a parabola is y=12x2+6x+23 .

What is the equation of the directrix?

 

y = 5.5

y = 4.5

​y = 2​

​y = 0.5

 

5. The equation of a parabola is 132(y−2)2=x−1 .

What are the coordinates of the focus?

(1, 10)

(1, −6)

(9, 2)

(−7, 2)

sii1lver  May 11, 2018
Sort: 

3+0 Answers

 #1
avatar+92463 
+1

Please post one question at a time.

 

3. What is the focus of the parabola?

y=−14x2−x+3

Enter your answer in the boxes.

 

\(y=−14x^2−x+3\\ y-3=−14(x^2+\frac{1}{14}x)\\ \frac{-1}{14}(y-3)=x^2+\frac{1}{14}x\\ \frac{-1}{14}(y-3)+\frac{1}{784}=x^2+\frac{1}{14}x+\frac{1}{784}\\ \frac{-1}{14}(y-3-\frac{1}{56})=(x+\frac{1}{28})^2\\ (x+\frac{1}{28})^2=\frac{-1}{14}(y-3\frac{1}{56})\\ (x+\frac{1}{28})^2=4*\frac{-1}{56}(y-3\frac{1}{56})\\\)

 

concave down parabola

 

\(Vertex=(\frac{-1}{28},3\frac{1}{56})\\ Axis\; of \;symmetry:\quad x=\frac{-1}{28}\\ focal\;length=\frac{1}{56}\\ focus=(\frac{-1}{28},3\frac{1}{56}-\frac{1}{56})\\ focus=(\frac{-1}{28},3)\\ \)

 

Here is the graph

 

Melody  May 11, 2018
 #2
avatar+92463 
+1

The others must be done by rearranging the equations as well.

 

you need them of the form

 

\((x-h)^2=4a(y-k)\)

 

Where (h,k) is the vertex and |a| is the focal length.

Melody  May 11, 2018
 #3
avatar+92463 
+1

The last one is sideways so the x and y will be swapped around.

Melody  May 11, 2018

11 Online Users

avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy