We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
83
6
avatar

Let n be the number of ordered quadruples \((x_1, x_2, x_3, x_4)\) of positive odd integers that satisfy the equation \(x_1+x_2+x_3+x_4 = 42\). Find n.

 Oct 13, 2019
 #1
avatar+435 
+6

What do you have in mind to do first?

 Oct 13, 2019
 #2
avatar+2417 
+1

Here is a start of a list for you

 

1 3 5 33

 

1 3 7 31

 

1 3 9 29

 

1 3 11 27

 

 

 

Good luck! laugh

CalculatorUser  Oct 13, 2019
 #3
avatar
+2

OK! Here is my attempt at this: I have used the first 17 odd numbers that sum up to 42. This is a partition problem summing up 4 odd numbers to equal 42. I have NOT considered the permutations of any one sum. For example: 1 + 3 + 5 + 33 =42 is considered as "one ordered quadruple", and NOT 4! = 24 permutations.


1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33


1 - 33 + 5 + 3 + 1 = 42
2 - 31 + 7 + 3 + 1 = 42
3 - 29 + 9 + 3 + 1 = 42
4 - 29 + 7 + 5 + 1 = 42
5 - 27 + 11 + 3 + 1 = 42
6 - 27 + 9 + 5 + 1 = 42
7 - 27 + 7 + 5 + 3 = 42
8 - 25 + 13 + 3 + 1 = 42
9 - 25 + 11 + 5 + 1 = 42
10 - 25 + 9 + 7 + 1 = 42
11 - 25 + 9 + 5 + 3 = 42
12 - 23 + 15 + 3 + 1 = 42
13 - 23 + 13 + 5 + 1 = 42
14 - 23 + 11 + 7 + 1 = 42
15 - 23 + 11 + 5 + 3 = 42
16 - 23 + 9 + 7 + 3 = 42
17 - 21 + 17 + 3 + 1 = 42
18 - 21 + 15 + 5 + 1 = 42
19 - 21 + 13 + 7 + 1 = 42
20 - 21 + 13 + 5 + 3 = 42
21 - 21 + 11 + 9 + 1 = 42
22 - 21 + 11 + 7 + 3 = 42
23 - 21 + 9 + 7 + 5 = 42
24 - 19 + 17 + 5 + 1 = 42
25 - 19 + 15 + 7 + 1 = 42
26 - 19 + 13 + 9 + 1 = 42
27 - 19 + 13 + 7 + 3 = 42
28 - 19 + 11 + 9 + 3 = 42
29 - 19 + 11 + 7 + 5 = 42
30 - 17 + 17 + 5 + 3 = 42
31 - 17 + 15 + 9 + 1 = 42
32 - 17 + 15 + 7 + 3 = 42
33 - 17 + 13 + 11 + 1 = 42
34 - 17 + 13 + 9 + 3 = 42
35 - 17 + 13 + 7 + 5 = 42
36 - 17 + 11 + 9 + 5 = 42
37 - 15 + 13 + 11 + 3 = 42
38 - 15 + 13 + 9 + 5 = 42
39 - 15 + 11 + 9 + 7 = 42

 Oct 13, 2019
 #4
avatar+2417 
+1

Good job! Guest! However the problem is asking how many ordered pairs,     EDIT: THIS IS WRONG

 

so we have one last step

 

One ordered pair can be ordered in 4! = 24 ways

 

 

So using your 39 ordered pairs,

 

39 * 24 = 936

CalculatorUser  Oct 13, 2019
edited by CalculatorUser  Oct 14, 2019
 #5
avatar
+1

No CU: it says "Let n be number of ordered "quadruples", or "sets of four", but not "pairs".

 Oct 13, 2019
 #6
avatar+2417 
+1

Aaaaaaaaah, I see!

CalculatorUser  Oct 14, 2019

17 Online Users

avatar