+0  
 
0
671
1
avatar

how much is the   sum 1/2^n, n=1,.....,(infinity)

 Jul 12, 2014

Best Answer 

 #1
avatar+130517 
+5

Sn = (1/2)^1 + (1/2)^2 + (1/2)^3  + ........+ (1/2)^(n-1) + (1/2)^n ..... where the sum ( Sn)  can be found by:

a1 / (1 - r) ....     where a1 is the first term = (1/2).... and  r is the geometric ratio between terms = (1/2)

So we have

(1/2) / (1 - 1/2) =  (1/2)/ (1/2)  = 1   

And that's the sum

 

  

 Jul 12, 2014
 #1
avatar+130517 
+5
Best Answer

Sn = (1/2)^1 + (1/2)^2 + (1/2)^3  + ........+ (1/2)^(n-1) + (1/2)^n ..... where the sum ( Sn)  can be found by:

a1 / (1 - r) ....     where a1 is the first term = (1/2).... and  r is the geometric ratio between terms = (1/2)

So we have

(1/2) / (1 - 1/2) =  (1/2)/ (1/2)  = 1   

And that's the sum

 

  

CPhill Jul 12, 2014

0 Online Users