+0  
 
0
39
1
avatar

what is tan7π/12 using the tam sum or difference formulas? 

What is sin105 using the sin sum or difference formulas?

 

please help I don't understand trigonometry 

Guest May 15, 2018
Sort: 

1+0 Answers

 #1
avatar+7056 
+1

\(\tan\big(\frac{7\pi}{12}\big)=\tan\big( \frac{\pi}{3}+\frac{\pi}{4} \big)\)

 

And the sum of two angles formula for tan is:

 

\(\tan(\alpha+\beta)=\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}\)         so......

 

\(\tan\big( \frac{\pi}{3}+\frac{\pi}{4} \big)=\frac{\tan\frac{\pi}{3}+\tan\frac{\pi}{4}}{1-\tan\frac{\pi}{3}\tan\frac{\pi}{4}}\)

                                                        And we know   \(\tan\frac\pi3=\sqrt3\)   and   \(\tan\frac\pi4=1\)    so...

\(\tan\big( \frac{\pi}{3}+\frac{\pi}{4} \big)=\frac{ \sqrt3 +1}{1-(\sqrt3)(1)}\\~\\ \tan\big( \frac{\pi}{3}+\frac{\pi}{4} \big)=\frac{ \sqrt3 +1}{1-\sqrt3}\)

                                                        Multiply numerator and denominator by  \((1+\sqrt3)\) .

\( \tan\big( \frac{\pi}{3}+\frac{\pi}{4} \big)=\frac{ (\sqrt3 +1)(1+\sqrt3)}{(1-\sqrt3)(1+\sqrt3)}\\~\\ \tan\big( \frac{\pi}{3}+\frac{\pi}{4} \big)=\frac{ 2\sqrt3+4}{-2}\\~\\ \tan\big( \frac{\pi}{3}+\frac{\pi}{4} \big)=-\sqrt3-2\\~\\ \tan\frac{7\pi}{12}=-\sqrt3-2\\~\\ \text{________________________}\)

 

sin( 105° )  =  sin( 45° + 60° )

 

And the sum of two angles formula for sin is:

 

sin(α + β)  =  sin α cos β + cos α sin β         so....

 

sin(45° + 60°)  =  sin 45° cos 60° + cos 45° sin 60°    

 

sin(45° + 60°)  =  \(\big(\frac{\sqrt2}{2}\big)\big(\frac{\sqrt3}{2}\big)+\big(\frac{\sqrt2}{2}\big)\big(\frac12\big)\)

 

sin(45° + 60°)  =  \(\frac{\sqrt6}{4}+\frac{\sqrt2}{4}\)

 

sin(45° + 60°)  =  \(\frac{\sqrt6+\sqrt2}{4}\)

 

sin 105°   =   \(\frac{\sqrt6+\sqrt2}{4}\)

hectictar  May 15, 2018

4 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy