+0  
 
0
1016
2
avatar+322 

I have no idea how to do this.  I tried approaching it in different ways but got it wrong each time.

 

Find the exact value of the trigonometric expression given that sin u = (7/25) and cos v = (−8/17).

 (Both u and v are in Quadrant II.) (Has to be a fraction, integer, or exact decimal)

 

sin(u + v)

 Nov 7, 2018
 #1
avatar+32 
+1

                              

.
 Nov 7, 2018
 #2
avatar+130037 
+1

sin ( u + v)   =  sin u cos v +  sin v cos u

 

Note...sin v  = sqrt  [ 1 - cos^2v]  = sqrt [  1 - (-8/17)^2]   =  sqrt [ 1 - 64 / 289]   = sqrt [ [289 - 64 ] / 289]  = sqrt[ 225/289]  =  15/17...and this is positve in Q2

 

cos u  = sqrt [ 1 - sin ^2u ]  = sqrt [ 1 - (7/25)^2 ] = sqrt [ 1 - 49 / 625 ] = sqrt [ [625- 49]/ 625 ]=

sqrt [ 576/ 625]   =  24 / 25....but...this is Q2 angle so cos u =  -24/25

 

So...we have

 

7/25   * -8 /17   +   15 /17  *  -24 / 25  =

 

[-56 -  360] / [ 425   =

 

-416 / 425

 

 

cool cool cool

 Nov 7, 2018

0 Online Users