+0  
 
+1
229
2
avatar+565 

What is the sum of all possible values of \(x\) such that \(2x(x-10)=-50\) ?

ant101  Dec 29, 2017
 #1
avatar+7323 
+2

2x(x - 10)   =   -50

                                             Distribute  2x  to both terms in parenthesees.

(2x)(x) + (2x)(-10)   =   -50

 

2x2 - 20x   =   -50

                                             Add  50  to both sides.

2x2 - 20x + 50   =   0

                                             Divide through by  2 .

x2 - 10x + 25   =   0

                                             Factor the left side of the equation.

(x - 5)(x - 5)  =  0

 

(x - 5)2  =  0

                                             Take the square root of both sides.

x - 5  =  0

 

x  =  5

 

The only possible value of  x  is  5 , so the sum of all the possible values is  5  .

hectictar  Dec 29, 2017
 #2
avatar+141 
+3

First we divide both sides by 2 to get \(x(x-10)=-25\). Expanding the left side and bringing the constant over, we get \(x^2-10x+25=0\) . We can factor this into \((x-5)(x-5)\), so the only possible value for \(x\)  is \(\boxed{5}\) , which is also our answer.

azsun  Dec 29, 2017

38 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.