+0  
 
0
1
908
2
avatar

summation notation of -1+2+7+14+23...

 Apr 2, 2015

Best Answer 

 #2
avatar+33663 
+10

If n is an integer then your series is given by ∑k=1 to n(k2 - 2)

k      k2 - 2    ∑k=1 to n(k2 - 2)

1        -1           -1

2          2            1

3          7            8

4          14          22

5          23          45

...

 Apr 2, 2015
 #1
avatar+118723 
+10

summation notation of -1+2+7+14+23...

What I noticed is that if I add 2 to each of these terms I get

1+4+9+16+     familiar?

sum of  n^2-2

 

$$\displaystyle\sum_{n=1}^\infty\;(n^2-2)$$

 Apr 2, 2015
 #2
avatar+33663 
+10
Best Answer

If n is an integer then your series is given by ∑k=1 to n(k2 - 2)

k      k2 - 2    ∑k=1 to n(k2 - 2)

1        -1           -1

2          2            1

3          7            8

4          14          22

5          23          45

...

Alan Apr 2, 2015

1 Online Users

avatar