+0  
 
0
45
2
avatar

Let  S = 1^2/(1.3) + 2^2/(3.5) + 3^2/(5.7) + 4^2/(7.9) +............+ 500^2/(999.1001).

What is the sum of S?  Thank you for help.

Guest Jul 24, 2018
 #1
avatar
0

Let S = 1^2/(1.3) + 2^2/(3.5) + 3^2/(5.7) + 4^2/(7.9) +.....+ 500^2/(999.1001)
Each term of S is of the form:n^2 /[(2n - 1)(2n + 1)]=1/4[n/(2n-1)+ n/(2n+1)]. Thus:
S = 1/4*∑[n/(2n-1)+ n/(2n+1)], n= 1 to 500
4S =∑[n/(2n-1)+ n/(2n+1)], n= 1 to 500=1/1+1/3+2/3+2/5+3/5+3/7+......+500/999+500/999. And since:
[n/(2n-1)+ (n+1)/(2n+1)] = 1, we can combine all such terms to get: 4S = 1 + 499 + 500/1001 =501,000/1,001, and:
S =125,250/1,011 =125 +125/1,011

Guest Jul 25, 2018
edited by Guest  Jul 25, 2018
 #2
avatar+19810 
0

Let  S = 1^2/(1.3) + 2^2/(3.5) + 3^2/(5.7) + 4^2/(7.9) +............+ 500^2/(999.1001).

What is the sum of S?

 

\(\begin{array}{|rcll|} \hline S &=& \dfrac{1^2}{1\cdot 3} + \dfrac{2^2}{3\cdot 5} + \dfrac{3^2}{5\cdot 7} + \dfrac{4^2}{7\cdot 9} + \ldots + \dfrac{500^2}{999\cdot 1001} \\\\ S &=& \sum \limits_{n=1}^{500} \dfrac{n^2}{(2n-1)(2n+1)} \\\\ && \boxed{\dfrac{1}{(2n-1)(2n+1)}=\dfrac12\cdot \left( \dfrac{1}{2n-1} - \dfrac{1}{2n+1} \right)} \\\\ S &=& \sum \limits_{n=1}^{500} n^2\dfrac12 \left( \dfrac{1}{2n-1} - \dfrac{1}{2n+1} \right) \\\\ S &=& \dfrac12 \sum \limits_{n=1}^{500} n^2 \left( \dfrac{1}{2n-1} - \dfrac{1}{2n+1} \right) \\\\ S &=& \dfrac12 \sum \limits_{n=1}^{500} \left( \dfrac{n^2}{2n-1} - \dfrac{n^2}{2n+1} \right) \\\\ 2S &=& \sum \limits_{n=1}^{500} \left( \dfrac{n^2}{2n-1}\right) - \sum \limits_{n=1}^{500} \left( \dfrac{n^2}{2n+1} \right) \\\\ 2S &=& \dfrac{1^2}{1\cdot2-1} + \sum \limits_{n=2}^{500} \left(\dfrac{n^2}{2n-1}\right) - \sum \limits_{n=1}^{499} \left(\dfrac{n^2}{2n+1}\right) -\dfrac{500^2}{2\cdot 500 + 1} \\\\ 2S &=& 1 + \sum \limits_{n=2}^{500} \left(\dfrac{n^2}{2n-1}\right) - \sum \limits_{n=1}^{499} \left(\dfrac{n^2}{2n+1}\right) -\dfrac{500^2}{1001} \\\\ 2S &=& 1 + \sum \limits_{n=1}^{499} \left(\dfrac{(n+1)^2}{2(n+1)-1}\right) - \sum \limits_{n=1}^{499} \left(\dfrac{n^2}{2n+1}\right) -\dfrac{500^2}{1001} \\\\ 2S &=& 1 + \sum \limits_{n=1}^{499} \left(\dfrac{(n+1)^2}{2n+1}\right) - \sum \limits_{n=1}^{499} \left(\dfrac{n^2}{2n+1}\right) -\dfrac{500^2}{1001} \\\\ 2S &=& 1 + \sum \limits_{n=1}^{499} \left(\dfrac{(n+1)^2-n^2}{2n+1}\right) -\dfrac{500^2}{1001} \\\\ 2S &=& 1 + \sum \limits_{n=1}^{499} \left(\dfrac{n^2+2n+1-n^2}{2n+1}\right) -\dfrac{500^2}{1001} \\\\ 2S &=& 1 + \sum \limits_{n=1}^{499} \left(\dfrac{2n+1}{2n+1}\right) -\dfrac{500^2}{1001} \\\\ 2S &=& 1 + \sum \limits_{n=1}^{499} \left(1 \right) -\dfrac{500^2}{1001} \\\\ 2S &=& 1 + 499 -\dfrac{500^2}{1001} \\\\ 2S &=& 500-\dfrac{500^2}{1001} \\\\ 2S &=& 500 \cdot \left(1-\dfrac{500}{1001} \right) \\\\ S &=& 250 \cdot \left(\dfrac{1001-500}{1001} \right) \\\\ S &=& \dfrac{250\cdot 501}{1001} \\\\ \mathbf{S} & \mathbf{=} & \mathbf{\dfrac{125250}{1001}} \\ \hline \end{array}\)

 

laugh

heureka  Jul 25, 2018

18 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.