We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
134
2
avatar+86 

Suppose f(x) is a polynomial of degree 4 or greater such that f(1)=2, f(2)=3, and f(3)=5. Find the remainder when f(x) is divided by (x-1)(x-2)(x-3).

 Dec 16, 2018
 #1
avatar+701 
-1

Note that f(1) = 2 means that the sum of the coefficients of f(x) = 2. Just try x = 2 for now and experiment to get your answer.

 Dec 16, 2018
 #2
avatar+5076 
+2

 

\(p(x)=(x-1)(x-2)(x-3)\\ r(x) = f(x) - p(x)q(x),~\text{ where }q(x) \text{ is the quotient of }f(x) \text{ and }p(x)\\ \text{note that }p(1)=p(2)=p(3) = 0\\ r(1) = f(1) - p(1)q(1) = f(1) = 2\\ r(2) = f(2) = 3\\ r(3) = f(3) = 5\)

 

\(\text{we have 3 equations so we are looking for a polynomial with 3 degrees of freedom}\\ \text{i.e. a 2nd degree polynomial }a x^2 + b x+ c\\ \text{plugging things in we get 3 equations}\\ a+b+c = 2\\ 4a+2b+c=3\\ 9a+3b+c=5\\ \text{This can be solved to obtain }\\ a=\frac{1}{2},b= -\frac{1}{2},c=2, \text{ and thus the remainder polynomial is}\\ r(x) = \dfrac 1 2(x^2 - x + 4)\)

.
 Dec 16, 2018
edited by Rom  Dec 16, 2018
edited by Rom  Dec 16, 2018

22 Online Users