+0  
 
-4
962
1
avatar+73 

I'm quite confused about what should I write about this problem. Is there anyone that could help me explain and answer this, please?

 

Suppose a classmate missed the lessons on completing the square to find the center and radius of a circle. Explain the process to them. If it helps, use a problem you’ve already done as an example.

 Apr 14, 2020
 #1
avatar+37146 
+2

x^2   + 4x          +  y^2 - 6y    -12    = 0      

 

Standard form of a circle  with center (h,k)   is    (x-h)^2  + (y-k)^2  = r^2 

    we want to get the red equation into that form to find the center , (h,k)

 

x^2 + 4x            + y^2 - 6y        - 12     = 0       'complete the square ' for 'x'   by taking 1/2 of the coefficient of  x

                                                                               then square it and add it to both sides of the equation to keep

                                                                                   everything balanced....

x^2 + 4x  + 4      + y^2 - 6y     - 12      = 4           do the same thing for the 'y' of the equation

x^2 + 4x +4        + y^2 -6y +9    -12   = 4 + 9     Now reduce the   x    and y portions to squares of binomials

(x+2)^2              + (y-3)^2         -12    =  4 + 9        add 12 to both sides

(x+2)2            +  (y-3)2        = 25

 

(x+2)2   + (y-3)2   =  52              Now you can readily see   h,k     as   (-2,3)    and the radius  = 5

 Apr 14, 2020
edited by ElectricPavlov  Apr 14, 2020

1 Online Users