We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
57
1
avatar

Suppose f(x)=\frac{3}{2-x}. If g(x)=\frac{1}{f^{-1}(x)}+9, find g(3).

 Nov 7, 2019

Best Answer 

 #1
avatar+2499 
+3

Bro post in rendered latex please! Stop being lazy buddy!
 

Suppose \(f(x)=\frac{3}{2-x}\). If \(g(x)=\frac{1}{f^{-1}(x)}+9\), find \(g(3)\).

 

 

Find the inverse of function f(x).     You do this by setting up f(x) as y, then switch "x" and "y". Solve for y.

.

\(y=\frac{3}{2-x}\)

\(x=\frac{3}{2-y}\)

\(2x-yx=3\)

\(2-y=\frac{3}{x}\)

\(y=-\frac{3}{x}+2\)

\(y=2-\frac{3}{x}\)

 

So now we figured out f-1(x). We then plug that into g(x).

 

\(g(x)=\frac{1}{2-\frac{3}{x}}\)

 

We then evaluate g(3).

 

I will leave that up to you now

 Nov 7, 2019
edited by CalculatorUser  Nov 7, 2019
 #1
avatar+2499 
+3
Best Answer

Bro post in rendered latex please! Stop being lazy buddy!
 

Suppose \(f(x)=\frac{3}{2-x}\). If \(g(x)=\frac{1}{f^{-1}(x)}+9\), find \(g(3)\).

 

 

Find the inverse of function f(x).     You do this by setting up f(x) as y, then switch "x" and "y". Solve for y.

.

\(y=\frac{3}{2-x}\)

\(x=\frac{3}{2-y}\)

\(2x-yx=3\)

\(2-y=\frac{3}{x}\)

\(y=-\frac{3}{x}+2\)

\(y=2-\frac{3}{x}\)

 

So now we figured out f-1(x). We then plug that into g(x).

 

\(g(x)=\frac{1}{2-\frac{3}{x}}\)

 

We then evaluate g(3).

 

I will leave that up to you now

CalculatorUser Nov 7, 2019
edited by CalculatorUser  Nov 7, 2019

6 Online Users

avatar
avatar