+0  
 
0
2780
3
avatar

Suppose f(x) is a rational function such that \(3 f \left( \frac{1}{x} \right) + \frac{2f(x)}{x} = x^2\) for all x =\=0. Find f(-2).

 May 22, 2018
 #1
avatar+118587 
+2

Suppose f(x) is a rational function such that

\(3 f \left( \frac{1}{x} \right) + \frac{2f(x)}{x} = x^2\)

  for all \(x\ne0\). Find f(-2).

 

We have

\(3 f \left( \frac{1}{-2} \right) + \frac{2f(-2)}{-2} = (-2)^2\\ 3 f \left( \frac{1}{-2} \right) - f(-2) =4\qquad \qquad(1)\\ and\\ 3 f \left( \frac{1}{-1/2} \right) + \frac{2f(-1/2)}{-1/2} = (-1/2)^2\\ 3 f \left( -2 \right) -4f(\frac{-1}{2}) =\frac{1}{4}\\ -4f(\frac{-1}{2}) +3 f \left( -2 \right)=\frac{1}{4}\qquad\qquad (2)\\--------------\\~\\ \quad 3 f \left( \frac{1}{-2} \right) - f(-2) =4\qquad \qquad(1)\\ \quad 12f \left( \frac{1}{-2} \right) - 4f(-2) =16\qquad \qquad(1b)\\ -4f(\frac{-1}{2}) +3 f \left( -2 \right)=\frac{1}{4}\qquad\qquad (2)\\ -12f(\frac{-1}{2}) +9 f \left( -2 \right)=\frac{3}{4}\qquad\qquad (2b)\\~\\ (1b)+(2b)\\ 5f(-2)=16\frac{3}{4}\\ f(-2)=3\frac{7}{20}\\ \)

 

The method is correct but you need to check for careless errors. 

 May 22, 2018
 #2
avatar+26364 
+2

Suppose

\(f(x) \)

is a rational function such that  \(3 f \left( \frac{1}{x} \right) + \frac{2f(x)}{x} = x^2\)

for all \(x \neq 0\). Find \(f(-2)\).

 

\(\begin{array}{|lrclcl|} \hline & 3f(\frac1x) + \frac2x f(x) &=& x^2 \\ & 3f(\frac1x) &=& x^2 - \frac2x f(x) \\ & f(\frac1x) &=& \frac{x^2}{3} - \frac{2}{3x} f(x) \qquad (1) \\ \\ \text{Set }x=\frac1x: & 3f(x) + 2x f(\frac1x) &=& \frac{1}{x^2} \\ & 2x f(\frac1x) &=& \frac{1}{x^2}-3f(x) \\ & f(\frac1x) &=& \frac{1}{2x^3}-\frac{3}{2x}f(x) \qquad (2) \\\\ \hline (1) = (2): & \frac{x^2}{3} - \frac{2}{3x} f(x) &=& \frac{1}{2x^3}-\frac{3}{2x}f(x) \\ & \frac{3}{2x}f(x) - \frac{2}{3x} f(x) &=& \frac{1}{2x^3} -\frac{x^2}{3} \\ & f(x)\left( \frac{3}{2x} - \frac{2}{3x} \right) &=& \frac{3-2x^5}{6x^3} \\ & f(x)\left( \frac{9x-4x}{6x^2} \right) &=& \frac{3-2x^5}{6x^3} \\ & f(x)\left( \frac{5x}{6x^2} \right) &=& \frac{3-2x^5}{6x^3} \\ & f(x)\left( \frac{5x}{1} \right) &=& \frac{3-2x^5}{x} \\\\ & \mathbf{f(x)} & \mathbf{=} & \mathbf{\dfrac{3-2x^5}{5x^2}} \\ \hline \end{array} \)

 

The rational function is  \(f(x) = \dfrac{3-2x^5}{5x^2}\)

 

\(f(-2)=\ ?\)

\(\begin{array}{|rclcl|} \hline f(-2) &=& \frac{3-2(-2)^5}{5(-2)^2} \\ &=& \frac{3+2^6}{5\cdot 4} \\ &=& \frac{3+64}{20} \\ &=& \frac{67}{20} \\ \mathbf{f(-2)} & \mathbf{=} & \mathbf{3.35} \\ \hline \end{array}\)

 

\(\text{ $f(-2)$ is $3.35$ }\)

 

graph:

 

laugh

 May 22, 2018
edited by heureka  May 22, 2018
 #3
avatar+118587 
+1

That is interesing Heureka, I had not realised that there was enough infromation to draw the graph. :)

Melody  May 22, 2018

2 Online Users

avatar