We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
547
3
avatar

Suppose f(x) is a rational function such that \(3 f \left( \frac{1}{x} \right) + \frac{2f(x)}{x} = x^2\) for all x =\=0. Find f(-2).

 May 22, 2018
 #1
avatar+100006 
+1

Suppose f(x) is a rational function such that

\(3 f \left( \frac{1}{x} \right) + \frac{2f(x)}{x} = x^2\)

  for all \(x\ne0\). Find f(-2).

 

We have

\(3 f \left( \frac{1}{-2} \right) + \frac{2f(-2)}{-2} = (-2)^2\\ 3 f \left( \frac{1}{-2} \right) - f(-2) =4\qquad \qquad(1)\\ and\\ 3 f \left( \frac{1}{-1/2} \right) + \frac{2f(-1/2)}{-1/2} = (-1/2)^2\\ 3 f \left( -2 \right) -4f(\frac{-1}{2}) =\frac{1}{4}\\ -4f(\frac{-1}{2}) +3 f \left( -2 \right)=\frac{1}{4}\qquad\qquad (2)\\--------------\\~\\ \quad 3 f \left( \frac{1}{-2} \right) - f(-2) =4\qquad \qquad(1)\\ \quad 12f \left( \frac{1}{-2} \right) - 4f(-2) =16\qquad \qquad(1b)\\ -4f(\frac{-1}{2}) +3 f \left( -2 \right)=\frac{1}{4}\qquad\qquad (2)\\ -12f(\frac{-1}{2}) +9 f \left( -2 \right)=\frac{3}{4}\qquad\qquad (2b)\\~\\ (1b)+(2b)\\ 5f(-2)=16\frac{3}{4}\\ f(-2)=3\frac{7}{20}\\ \)

 

The method is correct but you need to check for careless errors. 

 May 22, 2018
 #2
avatar+21977 
+1

Suppose

\(f(x) \)

is a rational function such that  \(3 f \left( \frac{1}{x} \right) + \frac{2f(x)}{x} = x^2\)

for all \(x \neq 0\). Find \(f(-2)\).

 

\(\begin{array}{|lrclcl|} \hline & 3f(\frac1x) + \frac2x f(x) &=& x^2 \\ & 3f(\frac1x) &=& x^2 - \frac2x f(x) \\ & f(\frac1x) &=& \frac{x^2}{3} - \frac{2}{3x} f(x) \qquad (1) \\ \\ \text{Set }x=\frac1x: & 3f(x) + 2x f(\frac1x) &=& \frac{1}{x^2} \\ & 2x f(\frac1x) &=& \frac{1}{x^2}-3f(x) \\ & f(\frac1x) &=& \frac{1}{2x^3}-\frac{3}{2x}f(x) \qquad (2) \\\\ \hline (1) = (2): & \frac{x^2}{3} - \frac{2}{3x} f(x) &=& \frac{1}{2x^3}-\frac{3}{2x}f(x) \\ & \frac{3}{2x}f(x) - \frac{2}{3x} f(x) &=& \frac{1}{2x^3} -\frac{x^2}{3} \\ & f(x)\left( \frac{3}{2x} - \frac{2}{3x} \right) &=& \frac{3-2x^5}{6x^3} \\ & f(x)\left( \frac{9x-4x}{6x^2} \right) &=& \frac{3-2x^5}{6x^3} \\ & f(x)\left( \frac{5x}{6x^2} \right) &=& \frac{3-2x^5}{6x^3} \\ & f(x)\left( \frac{5x}{1} \right) &=& \frac{3-2x^5}{x} \\\\ & \mathbf{f(x)} & \mathbf{=} & \mathbf{\dfrac{3-2x^5}{5x^2}} \\ \hline \end{array} \)

 

The rational function is  \(f(x) = \dfrac{3-2x^5}{5x^2}\)

 

\(f(-2)=\ ?\)

\(\begin{array}{|rclcl|} \hline f(-2) &=& \frac{3-2(-2)^5}{5(-2)^2} \\ &=& \frac{3+2^6}{5\cdot 4} \\ &=& \frac{3+64}{20} \\ &=& \frac{67}{20} \\ \mathbf{f(-2)} & \mathbf{=} & \mathbf{3.35} \\ \hline \end{array}\)

 

\(\text{ $f(-2)$ is $3.35$ }\)

 

graph:

 

laugh

 May 22, 2018
edited by heureka  May 22, 2018
 #3
avatar+100006 
+1

That is interesing Heureka, I had not realised that there was enough infromation to draw the graph. :)

Melody  May 22, 2018

24 Online Users

avatar